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Perspectives on Integer Programming in Sparse

Optimization

Jeffrey Linderoth

University of Wisconsin-Madison

Algorithms to solve mixed integer linear programs have made incredible progress
in the past 20 years. Key to these advances has been a mathematical analysis
of the structure of the set of feasible solutions. We argue that a similar analysis
is required in the case of mixed integer quadratic programs, like those that arise
in sparse optimization in machine learning. One such analysis leads to the so-
called perspective relaxation, which significantly improves solution performance
on separable instances. Extensions of the perspective reformulation can lead to
algorithms that are equivalent to some of the most popular, modern, sparsity-
inducing non-convex regularizations in variable selection.

Based on joint work with Hongbo Dong (Washington State Univ.), Oktay
Gunluk (IBM), and Kun Chen (Univ. Connecticut)



A Trust-Region Method for Nonconvex Finite-Sum

Minimization

Robert Mohr
Institute of Operations Research
Karlsruhe Institute of Technology

February 11, 2018

Extended Abstract

We consider the minimization problem

min
x∈Rd

F (x) :=
1

n

n∑

i=1

fi(x),

where n, d ∈ N and fi ∈ C2(Rd,R) for all i = 1, ..., n. Problems of this structure arise frequently
in supervised machine learning in form of the empirical risk minimization problem, a well known
example being the training of multilayer perceptrons. In these applications, n is the number of
datapoints and typically very large.

Successful algorithms from unconstrained nonlinear optimization, such as BFGS and trust-
region methods, are not well suited for the minimization of F , since they require the computation
of the gradient and (approximate) hessian of the objective function in every iteration. For
large n, these computations are expensive and inhibit fast progress in the early stages of the
optimization process.

For this reason, stochastic gradient decent is currently the most widely used method in the
“big data regime” and a large number of variants have been developed over the years, see for
example the survey papers Bottou et al. (2017) and Curtis & Scheinberg (2017). One common
drawback of most of these methods is that certain parameters (typically the step size) have to
be determined by the user through experimentation. Therefore, it is highly desirable to devise
methods that require no (or less) experimentation by the user. We argue that randomized
variants of trust-region methods, which so far have not gotten a lot of attention in the machine
learning community, could be an important step in this direction.

The method that we propose is called Adaptive Dynamic Sample Size Trust-Region method,
or ADST for short. In the beginning, the method operates only on averages of small samples
of the functions fi. During the optimization process the size of the samples is adaptively
increased (or decreased) depending on the progress made on the objective function F . We
prove that after a finite number iterations the sample size reaches n and the method becomes a
full-batch trust-region method. As a result, our method provides a new and efficient way to
apply trust-region methods to finite-sum minimization problems arising from machine learning
applications with a large number of datapoints. Numerical experiments on logistic regression
and multilayer perceptron training problems support our claim that our algorithm has significant
advantages compared to current state-of-the-art methods.



The Mismatch Principle:

What Can the Lasso Learn About Non-Linear Observations?

Martin Genzel (TU Berlin)

In many real-world problems, one is given a collection of (random) sample pairs (a1, y1), . . . , (am, ym) ∈
Rn × R where ai ∈ Rn is data (inputs) and yi ∈ R observations (outputs). A typical problem issue is
then the following: What can we learn about the relationship between the input and the output vari-
ables? Although one often does not impose very specific restrictions on the model, it is useful to think
of some (unknown) parameters that determine the underlying observation rule. A prototypical example
are single-index models for which the observations take the form

yi = f(〈ai,x0〉), i = 1, . . . ,m,

where f : R → R can be unknown, non-linear, and noisy. The goal is then to recover the unknown
(structured) parameter vector x0 ∈ Rn. Another important scenario is variable selection: There exists a
set of active variables S = {j1, . . . , js} ⊂ [n] such that

yi = F (ai,j1 , . . . , ai,js), i = 1, . . . ,m,

for some unknown, non-linear function F : Rs → R. Here, one is rather interested in finding S.
In this talk, we study how the generalized Lasso performs on such types of non-linear models:

min
x∈Rn

1
2m

m∑

i=1

(yi − 〈ai,x〉)2 subject to x ∈ K, (PK)

with K ⊂ Rn being a convex constraint set that encourages a certain structure of the solution (e.g.,
sparsity). It should be emphasized that (PK) is a standard estimator that is widely-used in practice and
does not require any specific knowledge of the underlying observation rule. The recent works of [1–4]
show that the Lasso—although originally designed for linear regression—is surprisingly robust against
non-linear distortions and can in fact handle much more complicated situations. A simplified and informal
recovery guarantee may read as follows:

Theorem 1 (informal, cf. [3, Thm. 6.4]) Suppose that {(ai, yi)}mi=1 are independent samples of a
joint random pair (a, y) ∈ Rn × R, where a is an isotropic, mean-zero sub-Gaussian random vector in
Rn. Fix an arbitrary target vector x\ ∈ K ⊂ Rn. Then, with high probability, any minimizer x̂ of (PK)
satisfies the following error bound:

‖x̂− x\‖2 .
(w(K)2

m

)1/4
+ ρ(x\), (1)

where w(K) denotes the Gaussian width of K and ρ(x\) :=
∥∥E[(〈a,x\〉 − y)a]

∥∥
2

is called the mismatch
covariance.

Remarkably, this statement holds true for every choice of x\ and there are no assumptions on the
output variable y. But in order to turn (1) into a meaningful error bound, one needs to ensure that the
offset term ρ(x\) is sufficiently small. If the target vector x\ can be chosen in such a way, Theorem 1
states that the Lasso yields a good estimator of x\. According to our initial problem issue, we can
therefore formulate a general “recipe” to prove theoretical guarantees for the Lasso:

Determine a target vector x\ ∈ K that captures the “parametric” structure of the observation
rule and minimizes the mismatch covariance ρ(x\) at the same time.

This mismatch principle particularly indicates when one can expect reasonable outcomes of (PK) and
when not. A crucial role is obviously played by the mismatch covariance because it measures the compat-
ibility between the linear fit of (PK) and the true (parametric) model. In the above examples, we would
have to specify a target vector in span{x0}∩K for single-index models and in {x | supp(x) ⊆ S}∩K for
variable selection, respectively. In fact, it turns out that in both cases (with Gaussian data) there always
exists an appropriate choice of x\ such that ρ(x\) = 0.

This is joint work with Peter Jung (TU Berlin) and Gitta Kutyniok (TU Berlin).
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Computing a Bivaraiate Partial
Information Decomposition Measure

Abdullah Makkeh∗, Dirk Oliver Theis†, Raul Vicente‡

Institute of Computer Science
Univeristy of Tartu, 51014 Tartu, Estonia

January 2018

Partial information decomposition is the decomposition of mutual infor-
mation into shared, unique, and synergistic information. In other words, the
decomposition allows quantifying the information any of the source signals
has about the target source in a complex system.

The first consistent information decomposition is due to William and
Beer [7]. They introduced the so-called William Beer axioms which are nat-
ural properties of shared information. From these axioms, they proposed the
partial information lattice framework for partial information decomposition.
Then they proposed a measure for shared information Imin which suffered
from serious flows. The Imin measure provoked a series of papers trying to
improve the measure [1–4].

Bertschinger et al. [2] proposed a measure for computing partial informa-
tion decomposition. The four information quantities are obtained by solving
a Convex Program. The Convex optimization is ill-conditioned and hard to
solve. We reformulated their Convex Program as a Cone Programming over
the exponential cone [5, 6]. But often scientists want to compute the partial
information decomposition subjected to some constraints, so we show how
to obtain subgradients in practice [5].
∗abdullah.makkeh@ut.ee
†dotheis@ut.ee
‡raul.vicente.zafra@ut.ee
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On big data, optimization and learning

Andrea Lodi

École Polytechnique de Montréal

In this talk I review a couple of applications on Big Data that I personally like
and I try to explain my point of view as a Mathematical Optimizer – especially
concerned with discrete (integer) decisions – on the subject. I advocate a tight
integration of Machine Learning and Mathematical Optimization (among oth-
ers) to deal with the challenges of decision-making in Data Science. For such
an integration I try to answer three questions: 1) what can optimization do for
machine learning? 2) what can machine learning do for optimization? 3) which
new applications can be solved by the combination of machine learning and
optimization?



Deep Learning Assisted Heuristic Tree Search
for the Pre-Marshalling Problem

André Hottung1, Shunji Tanaka2, Kevin Tierney1

1Decision Support & Operations Research Lab, University of Paderborn, Germany
ahottung@mail.upb.de,kevin.tierney@upb.de

2Institute for Liberal Arts and Sciences & Department of Electrical Engineering,
Kyoto University, Japan
tanaka@kuee.kyoto-u.ac.jp

Extended Abstract
One of the key challenges for operations researchers solving real-world problems is designing and im-
plementing high-quality heuristics to guide their search procedures. Machine learning techniques are
increasingly playing a role in operations research approaches, especially in terms of guiding branch-
ing and pruning decisions (see [Lodi and Zarpellon 2017] and [Dilkina et al. 2017]).

We integrate deep neural networks into a heuristic tree search procedure and call our approach
Deep Learning assisted heuristic Tree Search (DLTS). We apply it to a well-known problem from the
container terminals literature, the container pre-marshalling problem (CPMP). Our approach consists
of a policy network that makes branching decisions and a value network that predicts a lower bound
for given a node in the search tree. The approach learns good networks using examples from solved
CPMP instances.

Figure 1. The policy network for the CPMP.

Figure 1 shows the basic idea of the policy network as applied to a CPMP problem with three
tiers and three stacks. The goal of the CPMP is to find a minimal sequence of moves of containers such
that each stack is sorted ascending from the bottom to the top. In this example, the policy network
decides which of the containers 3, 2 or 6 should be moved next, and where it should be moved, as
seen in the output layer on the right side.

Our approach results in the new state-of-the-art solver for the CPMP despite having very little
heuristic information about the CPMP. We evaluate our approach on a large dataset of instances and
on several different instance types. DLTS on the CPMP improves the quality of the solutions found
over the state-of-the-art by over 4% in the same or less CPU time.

References
Dilkina, B., Khalil, E. B., and Nemhauser, G. L. (2017). Comments on: On learning and branching: a survey. TOP, 25(2):242–246.

Lodi, A. and Zarpellon, G. (2017). On learning and branching: a survey. TOP, 25(2):207–236.



Exact Mean Computation in Dynamic Time

Warping Spaces∗

Markus Brill1, Till Fluschnik1, Vincent Froese1, Brijnesh Jain2,
Rolf Niedermeier1, and David Schultz2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,
{brill, till.fluschnik, vincent.froese, rolf.niedermeier}@tu-berlin.de

2Distributed Artificial Intelligence Laboratory, TU Berlin, Germany,
{brijnesh-johannes.jain, david.schultz}@dai-labor.de

Time series such as acoustic signals, electrocardiograms, and internet traffic data
are time-dependent observations that vary in length and temporal dynamics.
Given a sample of time series, to filter out the corresponding variations, one
major direction to time series averaging applies dynamic time warping (dtw).
Time series averaging is often posed as an optimization problem [1–5] (here
called DTW-Mean): Let X =

(
x(1), . . . , x(k)

)
be a sample of k time series x(i).

A (Fréchet) mean in dtw-spaces is any time series z that minimizes the Fréchet
function

F (z) =
1

k

k∑

i=1

(
dtw

(
z, x(i)

))2
,

where dtw(x, y) denotes the dtw-distance between time series x and y.
We discuss several problematic statements in the literature concerning the

computational complexity of exact algorithms for DTW-Mean. We refute (sup-
plying counterexamples) some false claims from the literature and clarify the
known state of the art with respect to computing means in dtw-spaces. We
develop a dynamic program as an exact algorithm for DTW-Mean. The time
complexity of the proposed dynamic program is O(n2k+1 · k2k), where k is the
sample size and n is the maximum length of a sample time series. We apply the
proposed exact dynamic program on small-scaled problems as a benchmark of
how well state-of-the-art heuristics approximate a mean. Our empirical findings
reveal that all tested heuristics suffer from relatively poor worst-case solution
quality in terms of minimizing the Fréchet function, and the solution quality in
general may vary quite a lot. Moreover, a further theoretical contribution is to
show that in case of binary time series (both input and mean) there is an exact
polynomial-time algorithm for mean computation in dtw-spaces.

∗A conference version was accepted for publication at the SIAM International Conference
on Data Mining (SDM18).

1



Continuous Optimization and Machine Learning

Stephen Wright

University of Wisconsin-Madison

Techniques for formulating and solving optimization problems have become cen-
tral to modern machine learning and data analysis. We give an overview of how
these techniques are applied in such areas as classification, structured model
recovery, and deep learning. We address in particular the recent interest non-
convex optimization techniques, discussing both the applications and the al-
gorithms that have been proposed and analyzed, including new theory for an
approach from the 1980s: Newton/conjugate-gradient.



Algorithms Based on Unions of Nonexpansive Maps

Matthew K. Tam∗

Given two closed sets A and B in X = Rd, the Douglas–Rachford iterative scheme, starting at a
point x0 ∈ Rd, is given by

(∀n ∈ N) xn+1 ∈ T (xn) where T :=
I +RBRA

2
,

and RA denotes the metric reflector with respect to a set A. The scheme is well-known to converge when
both A and B are convex. In 2014, Bauschke & Noll [1] proved the following.

Theorem 1 (Bauschke–Noll [1]). Suppose that A and B are finite union of convex sets. Then the
Douglas–Rachford algorithm converges locally around points in A ∩B.

A case of particular interest arises when the set A is a sparsity constraint of the form

A = {x :∈ Rd : ‖x‖0 ≤ s}
where s < d. In particular, such a set is the finite union of subspaces.

In this talk, we consider a framework for the analysis of iterative algorithms which can be described in
terms of a structured set-valued operator which encompasses that of Bauschke & Noll [1] for the Douglas–
Rachford scheme. More precisely, we consider fixed point schemes based on operators T : X ⇒ X of the
following form.

Definition 2 (Union paracontracting). An operator T : X ⇒ X is said to be union paracontracting if
there exist a finite index set, I, a collection of single-valued paracontracting operators, {Ti}i∈I , and an
active selector, φ : X ⇒ I, satisfying

(P1) φ(x) is non-empty for every x ∈ X.

(P2) φ is outer semicontinuous (osc).

such that T can be expressed in the form

T (x) := {Ti(x) : i ∈ φ(x)} ∀x ∈ X.
Note that, for set-valued maps, there are two notions of fixed points which both coincide for single-

valued operators; the fixed point set denoted FixT := {x : x ∈ T (x)}, and the strong fixed point set
denoted FixT := {x : T (x) = {x}}.

Our main result is the following theorem concerning local convergence around fixed points.

Theorem 3 (T. [2]). Suppose T : X ⇒ X is union paracontracting with x∗ ∈ FixT , and define

r := sup {δ > 0 : φ(x) ⊆ φ(x∗) for all x ∈ B(x∗; δ)} .
Then r > 0 and, for any ε ∈ (0, r), it holds that ‖y−x∗‖ ≤ ‖x−x∗‖ whenever x ∈ B(x∗; ε) and y ∈ T (x).
Furthermore, if the initial point x0 is contained in B(x∗; ε) and xn+1 ∈ T (xn) for all n ∈ N, then the
sequence (xn)n∈N converges to a point x ∈ FixT ∩ B(x∗; ε).

As a concrete application our theorem, we analyse the forward-backward algorithm applied to sparsity
constrained minimisation

min
x∈X
{f(x) : ‖x‖0 ≤ s},

where f : X → R is convex and continuously differentiable with Lipschitz continuous gradient, ∇f ,
having Lipschitz constant L > 0.

∗Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083 Göttingen, Germany.
E-mail: m.tam@math.uni-goettingen.de
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A sequential homotopy method for unconstrained

optimization problems

Andreas Potschka

Universität Heidelberg

We consider the problem of finding a local minimum of a twice continuously dif-
ferentiable function f : D ⊆ Rn → R. The main challenge for efficient numerical
solution methods of this problem is the appropriate treatment of nonconvexity,
degeneracy, and large scale. We attack these challenges through the successive
partial solution of nonlinear homotopies, which aim to drive a proximal-type
regularization of f to zero. If one of the homotopies can be solved entirely,
we obtain a local minimum of f after a finite number of steps. Otherwise, the
sequential homotopy approach generates a sequence of iterates whose accumu-
lation points are stationary points of f . For the numerical solution of each
homotopy subproblem, we employ a corrector-free path-following method based
on backward step control with inexact solution of the linearized problems with
a preconditioned conjugate gradient method. Numerical results on the uncon-
strained problems of the CUTEst test set indicate that our method performs
competitively with a state-of-the art trust-region method in terms of computa-
tional speed, but tends to deliver better local optima in terms of the attained
objective values. We close the talk with an outlook on extensions to constrained
optimization problems and on challenges for the application to machine learning
problems.



Solving the Time-Dependent TSP with Machine

Learning Guidance

Imke Joormann

TU Braunschweig

In this talk, we consider the time-dependent traveling salesman problem (TDTSP),
a generalization of the asymmetric traveling salesman problem (ATSP) to incor-
porate time-dependent cost functions. Since the traveling times on an arc can
change with every minute, the IP formulation of the TDTSP is quite large and
cannot be solved easily. We introduce multiple families of cutting planes for the
TDTSP as well as different LP-based primal heuristics, a propagation method
and a branching rule. We conduct computational experiments to evaluate the
effectiveness of our approaches on several randomly generated instances.

The TDTSP has its origin in a real-world application, where, e.g., delivery
routes in one city but for different days are planned. This results in lots of
instances sharing (partly) the same structure. We explore how machine learning
techniques can be used to exploit this structure and be incorporated in the
Branch-and-Cut-and-Price solver.



DeepChem: Deep Learning Meets Nonlinear Optimization to Guide
Chemical Development

Kathrin Hatz1, Sadegh Mohammadi1, and Linus Görlitz1

1Bayer AG, Crop Science, Research & Development, Monheim, Germany

Workshop on Optimization, Machine Learning, and Data Science

Braunschweig, April 12-13, 2018

Abstract

The guiding question in early crop protection research is how to identify chemi-
cals which on the one-hand are new and economically synthesizable and on the other
hand fulfill many requirements as diverse as biological activity in the respective tar-
get organism (e.g. in specific fungi or weed), safety for all remaining organisms (incl.
humans) and safety for the environment (e.g. fast degradation in soil). In order
to deal with the sheer size of the chemical space of all pharmaceutically or agro-
nomically relevant molecules, which is estimated to be around 1033, various in-silico
approaches exist to virtually explore the chemical space in a structured way. Recent
advances rely on deep learning to generate new and potentially interesting struc-
tures. However, these approaches are exclusively focused on representing structure
information and are not capable of generating new molecules that fulfill a complete
profile of different biological, chemical and safety properties. Our goal is to use deep
learning methodologies to learn a representation of chemical structures that maps
compounds with similar profiles (e.g. biological activity in the target organism)
close in representation space. With that, we obtain guidance in the chemical space
towards areas where new, potentially interesting compounds could be located. Math-
ematically, this task leads to a two-step problem: learning of the optimal embedding
of a molecular structure combined with a prediction task mapping the embedding to
the desired profile which could be, e.g., the biological activity combined with further
requirements. Major challenges of this approach include

• the lack of data for the learning of the prediction task

• finding a proper problem formulation for the combination of the task (hierar-
chical optimization or multiobjective optimization - and how to balance the
two tasks?)

• convergence problems, i.e. choosing an optimization approach that is tailored
to the problem formulation, standard approaches often get stuck

• how to efficiently compute derivatives

• how to evaluate and deal with local minima

• how to optimally exploit known sparsity and structures during optimization
within a GPU architecture.

First results for finding the optimal embedding for predicting other molecular prop-
erties like polarity and lipophilicity of a structure are promising and support the
impression that using insights from nonlinear optimization within this deep learning
task could significantly advance these approaches.



Distributed Non-Convex Optimization in Power 
Systems 

A. Engelmann1, Y. Jiang2, B. Houska2 and T. Faulwasser1 

1Institute for Automation and Applied Informatics, 
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany 

 

2School of Information Science and Technology,  
ShanghaiTech University, Shanghai, China 

 

 

A core problem in the operation of large-scale energy systems is the reliable 

computation of near-optimal energy-efficient operation points. These operating points 

are usually computed solving large-scale NLPs denoted as AC Optimal Power Flow 

(OPF) problems. We investigate the application of distributed, non-convex 

optimization algorithms to AC-OPF problems. Many distributed algorithms such as 

the Alternating Direction of Multipliers Method (ADMM) are tailored to convex 

optimization problems. Since the AC-OPF problem is inherently and strongly non-

convex, there is no guarantee for these algorithms to converge. This limits their 

applicability for operation of critical infrastructures like power systems.  

 

We demonstrate that the recently proposed Augmented Lagrangian Alternating 

Direction Inexact Newton (ALADIN), which provides convergence guarantees for 

non-convex problems, is well-suited for solving AC-OPF problems [1, 2]. A detailed 

comparison to ADMM reveals that ALADIN converges faster and to a higher level of 

accuracy compared to ADMM. To this end, we draw upon the IEEE 118 bus and 

IEEE 300 bus test cases.  

 

 

 

 

 

 

 

 

References 
[1] Alexander Engelmann, Tillmann Mühlpfordt, Yuning Jiang, Boris Houska and 

Timm Faulwasser. "Distributed AC Optimal Power Flow using ALADIN." 

IFAC-PapersOnLine 50.1 (2017): 5536-5541. 

[2] Boris Houska, Janick Frasch and Moritz Diehl. "An Augmented Lagrangian 

Based Algorithm for Distributed Nonconvex Optimization." SIAM Journal on 
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Incorporating Prior Knowledge through Relevance Regularization

Christian Etmann, Peter Maass
Center for Industrial Mathematics, University of Bremen

Incorporating prior knowledge is instrumental for finding a good classification model. Inspired by how prior knowledge is
incorporated in inverse problems, we introduce a new family of regularization methods called ’relevance regularization’,
which allows us to incorporate priors for sparsity and image data.

In many inverse problems, given some known function f : X → Y and a (noisy) measurement y ∈ Y, the goal is to find
a suitable x∗ ∈ X such that f(x∗) ≈ y. Here, x∗ serves as an estimation of the underlying cause of y. The function f
typically models e.g. a physical process or a measurement procedure. For example in X-ray computed tomography, a
measured sinogram y is obtained from some (not directly measurable) tomography image x with the radon transform f
(plus noise). Problems of this type are usually posed as a minimization problem

x∗ ∈ argmin
x∈X

L(f(x), y) +R(x) (1)

over the space of causes X (Mueller & Siltanen, 2012). The regularization term R(x) is often used to incorporate prior
information about x:

• If the solution x∗ is expected to be sparse, the choice R(x) := λ‖x‖1 promotes sparse solutions.

• If x is an image (often modelled as a function x ∈ C1(Ω) on the rectangular domain Ω), then the total variation
TVp(x) :=

∫
Ω
‖∇x(z)‖pdz is used as a natural image prior R(x) = λTVp(x) in many image processing applications

such as denoising (Rudin et al., 1992), superresolution (Babacan et al., 2008), inpainting (Getreuer, 2012) and (blind)
deconvolution Chan & Wong (1998); Bioucas-Dias et al. (2006).

In classification, a similar approach for the incorporation of prior knowledge is only applied in linear models, e.g. in
`1-regularized logistic regression, where we minimize

1

n

[
n∑

i=1

L(s(Wx(i)), y(i))

]
+ λ‖W‖1, (2)

w.r.t. W for a labelled training dataset
{

(x(i), y(i))
}

, where s denotes the softmax function. For a sufficiently large value
of λ, the weight matrix W will be sparse, such that the prediction s(Wx) only depends on a few entries of x.
On the other hand, in the more general case of non-linear parametric models (such as convolutional neural networks), this
approach generally does not work as intended: If one simply penalizes the 1-norm of the model parameters during training,
the parameters will indeed be sparse. This however does in general not imply that the prediction only depends of a few
entries of x, which is the actual motivation.

The reason why this works for linear models but may fail for non-linear models is that the parameters W allow for a clear
interpretation of the relevance of the entries of x. In a neural network, the relationship between its input and its output
via its parameters is not evident at all, so that a penalty on these parameters is not fruitful. So how can these principles
be transferred to non-linear models?
For this, we introduce a relevance function

ρ : X ×Y ×P → Z, (3)

which allows for the assessment of the discriminative relevance of individual parts of the input for the classifier. Examples
for relevance functions include saliency maps (Simonyan et al., 2013), guided backpropagation (Springenberg et al., 2014)
and VisualBackProp (Bojarski et al., 2016). With a suitable regularization function

R : Z → R (4)

defined, we can influence the behavior of our model in a desired manner. We call this paradigm relevance regularization.
We demonstrate these principles both on the classification of mass spectra through sparse relevances as well as on the
problem of image classification on the ImageNet dataset using a TV prior.

References

Babacan, S Derin, Molina, Rafael, and Katsaggelos, Aggelos K. Total variation super resolution using a variational
approach. In Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pp. 641–644. IEEE, 2008.
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Sandra Keiper (TU Berlin)

There are many applications, where signals fulfill a secondary structure constraint besides sparsity. That is,
the nonzero entries of the signal x0 stem from a finite or discrete alphabet. Those signals appear, for example,
in error correcting codes1 as well as massive Multiple-Input Multiple-Output (MIMO) channel2 and wideband
spectrum sensing.3 There also exist several examples of applications, where the transmitted data originate from
a general finite set A ⊂ R such as in source decoding4 or radar.5

In this talk we will focus on signals with entries from a bounded lattice and show that compressed sensing
recovery guarantees for those signals can be improved significantly in some cases. More precisely, we will focus
on the following two structural assumptions.

We first consider the general case A = {−L1, . . . , L2}, L1, L2 ∈ N, and then A = {0, . . . , L}, L ∈ N.
Surprisingly, it will turn out that those alphabets exhibit quite different phenomena due to the positioning of
the zero within the set. A second key observation is the fact that mainly the boundary elements play a role
in the sense of −L1 and L2 in the case of bipolar finite-valued signals. Note, that the cases A = {0, 1} and
A = {−1, 0, 1} are particularly included. We will see that the proposed recovery algorithm will exploit the
structure of those signals exceptionally well.

For the reconstruction of finite-valued sparse signal we consider basis purusit with box constraints, i.e.,

min ‖x‖1 subject to Ax = b and x ∈ [−L1, L2]N . (PF )

New null space properties for the recovery of finite-valued k-sparse signals using (PF ), which allow equivalent
conditions for unique recoverability of such signals can be introduced.6 Using those properties one can analytically
compute the phase transitions of all versions (adapted to the specific alphabet considered) of (PF ) in the case
of a Gaussian matrix A, i.e.,

A = m−1/2 [ai,j ]
m,N
i,j=1, with i.i.d. ai,j ∼ N (0, 1). (1)

The content of the main theorem is illustrated in Figure 1.

Up until now, most measurement matrices, e.g. (1) that have been considered were centered, i.e., the expected
value of each entry was assumed to be 0. A simple numerical experiment reveals that, when recovering sparse
binary signals, i.e., A = {0, 1}, using (PF ), this might not be optimal. In Figure 2 we illustrated the results of
the numerical experiment to recover a binary signal for different sparsity levels and number of measurements
from 0/1-Bernoulli measurements using (PF ). Two observations can be made:

For both the Gaussian and Bernoulli distribution, the numerical experiments indicate that using m > N/2
measurements secures recovery with high probability, independent of the sparsity level. Furthermore, in the
Bernoulli case, and not in the Gaussian case, the numerical experiments suggest that the recovery of a sparse
binary signal is equally probable to the recovery of an saturated binary signal, i.e., an signal which has only a few
entries equal to zero. Using a probabilistic model, we provide conditions under which the recovery of both sparse
and saturated binary signals is very likely. In fact, we also show that under the same condition, the solution of
the boxed-constrained basis pursuit program can be found using boxed-constrained least-squares.

The talk is an overview of the results in [Keiper, Kutyniok, Lee, Pfander]6 and in [Flinth, Keiper].7
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Figure 1. Phase transition of the convex program (PF ) for bipolar (a) and
unipolar (b) signals according to the ratio of k̃ = k − kbnd to k, where is the
size of the support and kbnd the number of entries having largest amplitude.
Successful recovery is related to the area above the curves.
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Figure 2. Reconstruction from 0/1-
Bernoulli measurements via (PF ).
Ground truth x0 ∈ R500. We repeated
the experiment for each sparsity level and
number of measurements 25 times.



Learning Algebraic Varieties from Samples

Bernd Sturmfels
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This lecture discusses the role of algebraic geometry in data science. We report
on recent work with Paul Breiding, Sara Kalisnik and Madeline Weinstein. The
goal is to determine a real algebraic variety from a fixed finite subset of points.
Existing methods are studied and new methods are developed. Our focus lies on
topological and algebraic features, such as dimension and defining polynomials.
All algorithms are tested on a range of datasets and made available in a Julia
package.



A primal-dual homotopy algorithm for sparse
recovery with infinity norm constraints

Christoph Brauer

We consider the convex optimization problem

min
x∈Rn

‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ (Pδ)

with A ∈ Rm×n, b ∈ Rm and δ ≥ 0. By Fenchel-Rockafellar duality [Rockafellar, 1972],
it holds that x∗ is an optimal solution of (Pδ) if and only if there exists a y∗ ∈ Rm such
that

−A>y∗ ∈ ∂‖x∗‖1 and Ax∗ − b ∈ δ∂‖y∗‖1. (1)

If (x∗, y∗) is such an optimal pair, then y∗ is an optimal solution to the dual problem of
(Pδ). Therefore, we refer to y∗ as a dual solution.

In Brauer et al. [2018], we propose to solve a sequence of problems (Pδk)k=1,...,K with
δ0 > δ1 > · · · > δK = δ. The underlying motivation is that the transition from an
optimal pair (xk, yk) to a subsequent optimal pair (xk+1, yk+1) can be much less complex
than solving (Pδ) directly. The basic idea behind our method is the following: We start
with (x0, y0) = (0, 0) which is an optimal pair for (Pδ0) with δ0 = ‖b‖∞. Given an
optimal pair (xk, yk) for (Pδk), we first fix xk and δk in (1) and determine a yk+1 6= yk

such that the optimality conditions are still satisfied at (xk, yk+1). Next, we fix yk+1

in (1) and seek a xk+1 6= xk and a tk+1 > 0 such that the conditions are satisfied at
(xk+1, yk+1) and with δk+1 = δk − tk+1.

Although the optimality conditions (1) are non-linear due to the occuring subdiffer-
ential, it turns out that they can be reformulated in a linear fashion if either x∗ or y∗

are fixed. Therefore, we propose to determine yk+1 and (xk+1, tk+1) by solving two lin-
ear programs, where the objective functions are chosen such that finite termination can
be guaranteed. Furthermore, we propose a dedicated active-set strategy that provably
works efficiently in this setting [Brauer et al., 2018].

In Brauer [2018], we show that the algorithm terminates after at most (3m+n +
1)/2 iterations and consider an example where the algorithm needs exactly (3n + 1)/2
iterations. Moreover, using the example of cross-validation for sparse linear discriminant
analysis [Cai and Liu, 2011], we demonstrate that the availability of the entire homotopy
path of (Pδ) can be particulary useful in the context of classification tasks. Further
applications discussed in Brauer et al. [2018] include sparse dequantization [Brauer et al.,
2016], sparse precision matrix estimation [Cai et al., 2011], Chebyshev estimation [Appa
and Smith, 1973, Stiefel, 1959] and the Dantzig selector problem [Candès and Tao, 2007].



Attainable Regions of Bio-Chemical Reactions

Nidhi Kaihnsa
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In this talk we look at the mass-action kinetics of bio-chemical reactions. We
then give a mathematical definition of attainable region. Attainable region is
feasible set of an optimisation problem. We characterise this region for linear
systems and present a conjecture for weakly reversible systems based on com-
putational experiments. We also discuss a construction due to Cynthia Vinzant
which is adapted to describe faces in the convex hull of trajectories.


