
pySLEQP: A Sequential Linear Quadratic
Programming Method Implemented in Python

Felix Lenders, Christian Kirches, and Hans Georg Bock

Abstract We present a prototype implementation of a Sequential Linear Equality-
Constrained Qudratic Programming (SLEQP) method for solving the nonlinear pro-
gramming problem. Similar to SQP active set methods, SLEQP methods are itera-
tive Newton-type methods. In every iteration, a trust region constrained linear pro-
gramming problem is solved to estimate the active set. Subsequently, a trust region
equality constrained quadratic programming problem is solved to obtain a step that
promotes locally superlinear convergence. This class of methods has several appeal-
ing properties for future research in large-scale nonlinear programming. Implemen-
tations of SLEQP methods accessible for research, however, are scarcely found. To
this end, we present pySLEQP, an implementation of an SLEQP method in Python.
The performance and robustness of the method and our implementation are assessed
using the CUTEst and CUTEr benchmark collections of nonlinear programming
problems. pySLEQP is found to show robust behavior and reasonable performance.

Felix Lenders
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University. Im Neuenheimer
Feld 368, 69120 Heidelberg, GERMANY. e-mail: felix.lenders@iwr.uni-heidelberg.de

Christian Kirches
Institut für Mathematische Optimierung, Technische Universität Carolo-Wilhelmina zu Braun-
schweig. Am Fallersleber Tore 1, 38100 Braunschweig, GERMANY e-mail: c.kirches@tu-bs.de
and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University. Im Neuen-
heimer Feld 368, 69120 Heidelberg, GERMANY. e-mail: christian.kirches@iwr.uni-heidelberg.de

Hans Georg Bock
Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University. Im Neuenheimer
Feld 368, 69120 Heidelberg, GERMANY. e-mail: bock@iwr.uni-heidelberg.de

1

2 Felix Lenders, Christian Kirches, and Hans Georg Bock

1 Introduction

In this article, we take interest in computing local minima of the nonlinear program-
ming problem {

min
x∈Rn

f (x) s.t. ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈I

, (NLP)

where f : Rn → R and c : Rn → R|I∪E | are C 2 functions, and I and E denote
disjoint finite index sets, using sequential linear equality-constrained quadratic pro-
gramming (SLEQP) methods, a class of Newton-type active-set methods first pro-
posed by [10, 11].

Nonlinear programming has applications in many areas of mathematical opti-
mization, e.g. as an important class of subproblems in mixed-integer nonlinear op-
timization [2] or in direct methods for optimal control [3, 19]. Beyond this, many
applied research domains make use of nonlinear optimization techniques to study
real-world problems in, e.g., process and control engineering.

Different from the more widely known class of sequential quadratic program-
ming (SQP) methods, SLEQP methods successively solve linear models of an exact
penalty function to estimate the active set, and promote locally superlinear conver-
gence by solving a quadratic model on that active set. Variants of this approach have
been described in, e.g., [4, 5, 7]. With Knitro [6], a commercial, closed-source solver
exists. SLEQP methods have particular appeal for future large-scale nonlinear pro-
gramming efforts, as a) linear programming technology is highly mature, e.g. [16],
and still significantly more powerful than QP technology; b) the linear program uti-
lized for active set estimation can be replaced by any oracle that provides an active
set guess, e.g. [21]; c) KKT systems can be solved iteratively [14]; d) the costly-to-
compute Hessian of the Lagrangian is never explicitly required.

Contributions. Open implementations of SLEQP methods that are accessible to
research are scarcely found. Addressing this gap, we present a prototypical Python
implementation, named pySLEQP, of an SLEQP method for solving the nonlinear
programming problem. We assess its performance on the established benchmark li-
braries CUTEst and CUTEr and find it to be most robust in the sense that it solves
the largest fraction of problems. Performance is found to be acceptable for an inter-
preted language. The source code of pySLEQP and the data of the numerical studies
presented §4 are available at [20].

Structure. The remainder of this article is laid out as follows. In §2 we intro-
duce nonlinear programming terminology as required, and give a concise descrip-
tion of the family of sequential linear equality-constrained quadratic programming
methods. pySLEQP, a new prototype implementation of an SLEQP method in the
interpreted language Python is presented in §3. The performance of this implemen-
tation is evaluated in §4, using the well-established CUTEst and CUTEr benchmark
collections of instances of nonlinear programming problems. The article concludes
with a brief summary and an outlook on future research topics in §5.

pySLEQP: A Sequential Linear Quadratic Programming Method 3

2 Sequential Linear Equality Constrained Quadratic
Programming

We start by recalling a few basic concepts from nonlinear programming before pre-
senting this class of SLEQP methods in greater detail. We denote the Lagrange func-
tion of (NLP) by L : Rn×R|I∪E |→ R with L(x,λ) := f (x)+ 〈λ ,c(x)〉. Assuming
a suitable constraint qualification, e.g. MFCQ [23], existence of a KKT tuple is a
necessary condition for a local minimizer of (NLP).

Theorem 1. Let x∗ be a local minimizer for (NLP) and let MFCQ hold, i.e., the
vectors (∇ci(x∗))i∈E are l.i. and there is d ∈ Rn such that 〈∇ci(x∗),d〉 = 0 for all
i ∈ E and 〈∇ci(x∗),d〉< 0 for all i ∈I with ci(x∗) = 0. Then there is λ ∗ ∈ R|I∪E |
satisfying

∇xL(x∗,λ ∗) = 0, λ ∗I ≥ 0, 〈λ ∗I ,cI (x∗)〉= 0. (1)

Next, a sufficient condition for a KKT tuple (x∗,λ ∗) to be a local minimum of (NLP)
is given by the following theorem.

Theorem 2. Let (x∗,λ ∗) satisfy Thm. 1 and let 〈d,∇xxL(x∗,λ ∗)d〉 ≥ 0 for all vectors
d ∈Rn such that 〈∇ci(x∗),d〉= 0 for all i ∈ E ∪I with ci(x∗) = 0. Then (x∗,λ ∗) is
a local minimum of (NLP).

Proofs of both theorems can be found in, e.g., [25, Ch. 12]. SLEQP methods are
active set methods that use an estimate of the working set W . A step is computed
by minimizing a suitable quadratic model of the problem taking into account only
those constraints predicted by the working set W , which is estimated by minimizing
a linear model of an exact penalty function. A summary of the computational steps
required for one iteration of an SLEQP method is presented in Algorithm 1. In the
following, we elaborate on the four major components.

Estimation of the Active Set

We use an `1-penalty function approach that minimizes the exact penalty function

φν(x) := f (x)+ν ∑
i∈E
|ci(x)|+ν ∑

i∈I
[ci(x)]

+ , (2)

for (NLP) due to [17]; [·]+ denotes clamping to the nonnegative. For a linearization
point x̄ ∈ Rn, we obtain an active set estimate by minimizing the linearization

`ν(x̄,d) := 〈∇ f (x̄),d〉+ν ∑
i∈E
|ci(x̄)+ 〈∇ci(x̄),d〉|+ν ∑

i∈I
[ci(x̄)+ 〈∇ci(x̄),d〉]+

of (2) subject to an `∞ trust region of size ∆LP. This problem reads

min
d∈Rn

`ν(x̄,d) s.t. ‖d‖∞ ≤ ∆LP, (LP(ν ,∆LP))

4 Felix Lenders, Christian Kirches, and Hans Georg Bock

and a true linear reformulation, easily obtained by appropriate introduction of slack
variables, can be solved using highly mature simplex technology, e.g. [16].

Given a point x, a working set W (x) at x is a maximal subset of the active set
{i ∈ E ∪I |ci(x) = 0} such that (∇ci(x))i∈W is linearly independent. Besides the
step dLP, the solution of (LP(ν ,∆LP)) provides an estimation of W = W (x̄+ dLP)
using simplex basis information, where active trust region bounds are omitted.

Cauchy Step and Estimation of Lagrange Multipliers

We form a quadratic model of the penalty function (2),

q(x̄,d) := `(x̄,d)+ 1
2 〈d,∇xxL(x̄,λLS)d〉, (3)

and define the Cauchy step dC to be the minimizer of q(x̄, ·) along the segment
d ∈ [0,dLP]. Convergence of SLEQP can be shown, e.g. [5], if steps are taken that
make progress at least as good as dC. In practice, we compute an approximation to
dC via a backtracking line search of Armijo type [25] along [0,dLP].

The Lagrange multipliers λLS required in (3) are obtained by computing a mini-
mum residual solution of the KKT stationarity condition[

I (∇ci(x))
ᵀ
i∈W

(∇ci(x))i∈W 0

](
*
−λ̂LS

)
=

(
−∇ f (x)

0

)
. (4)

The component * denotes the residual vector of the least squares estimation, and
is not needed. The obtained multipliers are projected onto the feasible set of mul-
tipliers, (λLS)I := [(λ̂LS)I]+, (λLS)E := (λ̂LS)E , (λLS)i = 0 for i /∈W . While we
could have chosen the multipliers λLP (or λEQP below) provided by the solution of
(LP(ν ,∆LP)) or (EQP(ν ,∆EQP)), the choice (4) provides us with multipliers satis-
fying KKT stationarity best. This is possible at negligible cost as the matrix in the
linear system to compute the multiplier has to be factorized in the EQP step as well
and the additional cost of computing λ̂LS is only one solve.

Computation of a Newton-Type Step

We denote by V := {i ∈I \W |ci(x̄) > 0}∪{i ∈ E \W |ci(x̄) 6= 0} the set of vi-
olated inequalities not covered by the working set and associate with it the penalty
function mν(x) := f (x)+ν ∑i∈V |ci(x)|. Since ci(x̄) 6= 0 for i ∈ V this is a C 2 func-
tion in a neighbourhood of x̄ by continuity of c. mν penalizes violated constraints
that will not be enforced as equality in the EQP. A Newton-type step dEQP is com-
puted by minimizing a quadratic model qν(x̄,d) of the penalty function mν around
x̄,

qν(x̄,d) = 〈∇xmν(x̄),d〉+ 1
2 〈d,∇xxmν(x̄)d〉, (5)

subject to linearized constraints estimated by W and an `2 trust region of size ∆EQP,

pySLEQP: A Sequential Linear Quadratic Programming Method 5{
min
d∈Rn

qν(x̄,d) s.t. ci(x̄)+ 〈∇ci(x̄),d〉= 0, i ∈W ,

‖d‖2 ≤ ∆EQP.
(EQP(ν ,∆EQP))

The EQP can be solved directly, by projecting the trust region onto the null space of
the linear constraints. We have preferred an iterative solution and make use of the
projected conjugate gradient method GLTR that respects the trust region constraint
or finds a suitable point on the trust region boundary, see [14]. For large-scale prob-
lems or expensive constraint functions c as arising in optimization with differential
equations, this is appealing: the Hessian is only accessed by evaluations of the linear
mapping d 7→ ∇xxL(x̄,λ)d.

Algorithm 1 Sequential Linear Equality Constrained Quadratic Programming

Require: Initialization k← 0, x0, ∆ 0
LP, ∆ 0

EQP, ν0, ρacc
1: while termination criterion not satisfied do
2: νk← Adjust Penalty Parameter
3: dk

LP, W k← Solution of Active-Set-LP with trust region ∆ k
LP

4: λ k← Estimate Multiplier using Minimum Norm Estimation
5: dk

C← Compute Cauchy-Step
6: dk

EQP← Solution of EQP with trust region ∆ k
EQP, Working Set W k

7: xk
try← xk +dk

C +dk
EQP trial step

8: ρk← Ratio Actual vs. Predicted Reduction
9: if ρk ≥ ρacc then

10: xk+1← xk
try

11: else
12: dSOC← compute second order correction via (6)
13: xk

try← xk
try +dk

SOC second order correction
14: ρk← Ratio Actual vs. Predicted Reduction
15: if ρk ≥ ρacc then xk+1← xk

try else xk+1← xk

16: end if
17: ∆ k+1

LP ,∆ k+1
EQP← Adjust Trust Region Radii

18: k← k+1
19: end while

Miscellaneous Topics

If the attempted trial step fails (lines 7-9 in Algorithm 1), we employ a second order
correction step dSOC that is obtained as minimum norm solution of the constraints
in the working set W at the trial point x = xtry:[

I (∇ci(x))
ᵀ
i∈W

(∇ci(x))i∈W 0

](
dSOC

*

)
=

(
0

(ci(xSOC)i∈W

)
. (6)

Again, the component * of the solution vector is not needed. We use MA57 [8] to
factorize the matrix needed to determine the least-squares estimate of the multiplier,
in the second order correction, and in the projected conjugate gradient method.

Details of the heuristics for choosing the penalties νk in line 2 and the radii ∆ k
LP

and ∆ k
EQP in line 14 have been implemented as described in [5].

6 Felix Lenders, Christian Kirches, and Hans Georg Bock

3 Prototype Implementation in Python

The algorithm pySLEQP has been implemented using the Python scripting lan-
guage. Similar to Matlab, Python is an interpreted language that provides fast meth-
ods to work on numerical data with the NumPy and SciPy packages [18]. Via the
Cython package [1], C, C++, and Fortran code can be used directly from Python.
Thus, rapid prototyping is possible while time critical components of the algorithm
can be implemented in a compiled language.

We use the dual simplex method of GuRoBi 6.0 [16] to solve (LP(ν ,∆LP)) and
GLTR [14] to solve the (EQP(ν ,∆EQP)). The implementation has been realized as
a Python module pysleqp that provides a class SLEQP holding one instance of a
NLP. We allow slightly more general formulations for the NLP, while the class of
problems remains the same:{

min
x∈Rn

f (x) s.t. xl
i ≤ xi ≤ xu

i , i = 1, . . . ,n,

cl
i ≤ ci(x) ≤ cu

i , i = 1, . . . ,m.

To instantiate such a class, the user must provide the following data:

• n, m: Numbers of variables and constraints;
• firstorder: Python callback function with input argument x and output ar-

guments (f (x), ∇ f (x), c(x), Jc(x)). Here, x,∇ f (x),c(x) are NumPy arrays, f (x)
is a Python double scalar, and Jc(x) is a SciPy sparse matrix;

• hessprod: Python callback function with input arguments (x, σ , λ , d) and out-
put argument h=σ〈∇xx f (x),d〉+∑

m
i=1 λi〈∇xxci(x),d〉. Here x,λ ,d,h are NumPy

arrays, and σ is a python scalar that currently will always be 1.0;
• hessprodre: Python callback function with the same signature as hessprod.

This function will be called if (x,λ ,d) coincide with the arguments of the most
recent call to compute a Hessian-vector product, and only the direction d differs;

• x: NumPy array with initial solution guess;
• xl, xu: NumPy array with variable bounds xl ≤ x≤ xu;
• cl, cu: NumPy array with constraint function bounds cl ≤ c(x)≤ cu.

After instantiation, the method optimize starts the optimization loop. After
termination, the class variable terminate contains a python dictionary with all
relevant solution information and detailed timings. The class variable x contains the
solution point in case of a successful termination, or the last point that has been
considered in the algorithm in case of non-convergence.

4 Performance of pySLEQP on a Benchmark Collection

In this section, we use CUTEr and its successor CUTEst [15] as benchmark col-
lections to assess the performance of the implementation. CUTEst is an up-to-date
selection of 1149 nonlinear programming problem instances arising from various

pySLEQP: A Sequential Linear Quadratic Programming Method 7

fields of optimization and including instance with up to 250,000 variables and con-
straints.

Performance on CUTEst

We have omitted 40 instances from CUTEst for which evaluations fail due to, e.g.,
starting points for which functions are not well-defined, and the remaining bench-
mark set then consists of 1109 instances. Computations were run on an Intel(R)

Core(TM) i7 920 at 2.67 GHz and 6 GB RAM running Ubuntu Linux 14.04 LTS,
using one core per solver. pySLEQP solved 85% of the benchmark set within a wall
time limit of one hour per instance, i.e ρ(3600) = 0.85. Fig. 1a shows the ratio ρ(t)
of instances that could be solved within a wall time limit of t. Fig. 1b shows the ratio
ρ(N) of instances that could be solved within an iteration limit of N. Fig. 1c shows
the ratio ρ(N) of instances that could be solved within a limit of N on the number
of Hessian-vector products.

Table 1d gives a breakdown of the relative computational cost of the steps of Al-
gorithm 1, excluding function evaluations. As can be seen, solving (LP(ν ,∆LP)) to
obtain an active set estimate and solving (EQP(ν ,∆EQP)) to obtain a Newton-type

10−2 100 102 104

0

0.2

0.4

0.6

0.8

time t [s]

(a) Performance in terms of CPU time t.

100 101 102 103 104

0

0.2

0.4

0.6

0.8

iterations N [-]

(b) Performance in terms of # N of iterations.

100 102 104 106

0

0.2

0.4

0.6

0.8

products N [-]

(c) Performance in terms of # N of matrix-
vector products with the Hessian ∇xxL(x,λ).

Lines of Algorithm 1 H mean % var. %

3 Active Set Determination 55.5 3.4
6 EQP Setup 12.6 1.8
6 Line search dEQP 11.4 0.7
6 EQP Solution 11.3 4.7
4, 6, 12 Factorization pCG 2.9 0.1
2, 1 Penalty, Term. Test 2.6 0
5 Line search dC 2.0 0.1
12 Second Order Corr. 1.7 0.1

(d) Distribution of CPU time spent inside
pySLEQP, excluding function evaluations.

Fig. 1: Ratio ρ of problems of the CUTEst benchmark collection solved by the
SLEQP implementation pySLEQP within (a): at most t seconds, (b): at most N iter-
ations, (c): at most N products with of the Hessian of the Lagrangian ∇xxL(x,λ).

8 Felix Lenders, Christian Kirches, and Hans Georg Bock

step dominate the computational effort. Significant amounts of interpreted Python
code are executed during EQP setup, trust region ratio computation, penalty func-
tion evaluation, and in the termination test. Here, one may expect speed-ups after
reimplementation in a compiled language.

Comparison on CUTEr

Not all the solvers we are using to compare our implementation directly support
CUTEst. Hence, we have chosen to use the AMPL translation of CUTEr for that
purpose. The advantage of using the modeling system AMPL [12] is given by the
fact that it provides a unified interface to different solvers. The AMPL translation
consists of a 924 instance subset of CUTEr that may slightly differ from its CUTEst
counterpart in supplied start points, parameter values, and choices for variable sized
problems. Like done for CUTEst, we omit all instances for which evaluations fail.
We also omit instances that could be solved by any solver in less than 0.11 seconds
which constitutes a test set including 183 problems. For such tiny instances, the
overhead time required for starting the Python interpreter (0.11 seconds) dominates
the actual solution time. Again, we imposed a wall time limit of one hour on the
solution time per instance.

To compare our prototypical SLEQP implementation with the established active
set solvers filterSQP [9], SNOPT [13], MINOS [24], and the active-set solver of
Knitro [6], we compute an extended performance profile according to [22]: For P
the set of problems and S the set of solvers, let ts,p denote the CPU time solver
s ∈ S needs to solve instance p ∈P , and let rs,p denote the ratio solver s ∈ S

10−4 10−3 10−2 10−1 100 101 102 103 104 105

0

0.2

0.4

0.6

0.8

1

τ

ρ(
τ)

pySLEQP (this article)

SNOPT
MINOS

filterSQP
Knitro (commerical)

Fig. 2: Extended performance profile comparing the SLEQP implementation
pySLEQP with state-of-the-art active set nonlinear programming solvers on CUTEr.

pySLEQP: A Sequential Linear Quadratic Programming Method 9

needs for a certain instance p ∈P in comparison to the fastest solver. Then ρs(τ)
denotes the fraction of problems solver s solves in at least τ times the CPU time of
the fastest solver, where

rs,p := ts,p/min{ti,p | i ∈S , i 6= s}, ρs(τ) := |{p ∈P |rs,p ≤ τ}|/|P|. (7)

The result for the above subset of the CUTEr benchmark collection is shown in
Fig. 2. It can be seen that together with Knitro and filterSQP our implementation
pySLEQP is among the most robust of the five solvers, in the sense that they solve
the largest fraction of problems within the wall time limit. pySLEQP is implemented
in the interpreted language Python that incurs some speed limitations, and is hence
not the overall fastest solver. Still, it achieves a performance that is competitive with
other solvers that have been implemented in the compiled languages Fortran/C++.

5 Summary and Conclusions

In this article, we have presented the prototypical Python implementation pySLEQP
of an SLEQP method for solving the nonlinear programming problem. Our contribu-
tion fills a gap in the landscape of academic research codes for nonlinear program-
ming. On the well-established CUTEr benchmark collection, pySLEQP has been
show to deliver competitive performance and to be more robust than three popular
NLP solvers examined. Hence, the implementation provides a reliable foundation
for investigating future developments in high-performance nonlinear programming
that will allow to treat challenging real-world problems. Future developments will
have to address the trust region search and the EQP subproblem. First, problem
(LP(ν ,∆LP)) really is a parametric problem in ∆LP. As already noted in [5], its so-
lution using a parametric simplex method may allow a more elaborate choice of the
radius ∆LP. Second, when solving the EQP, the method requires only matrix-vector
products with the Hessian ∇xxL(x,λ). This advantage of SLEQP methods over SQP
methods is particularly promising in conjunction with ODE/DAE constrained NLPs
arising in optimal control, e.g. [3, 19], wherein evaluating full second derivatives
may be prohibitively expensive while computing a few directional derivatives may
be feasible. Finally, both the EQP and the Lagrange multiplier estimate open up
the possibility of preconditioning. A conversion of the Python implementation of
pySLEQP to a compiled language such as Fortran, C, or C++ promises to bring
speedups that may help to shift the pySLEQP curve of Fig. 2 further to the left,
increasing competitiveness with SNOPT also for smaller instances.

Acknowledgements F. L. and C. K. were supported by DFG Graduate School 220 funded by
the German Excellence Initiative. Financial support by the German Federal Ministry of Educa-
tion and Research, grant no 05M2013-GOSSIP, by the European Union within the 7th Framework
Programme under Grant Agreement no 611909, and by German Research Foundation within DFG
project no BO364/19-1 is gratefully acknowledged. F. L. gratefully acknowledges funding by the
German National Academic Foundation.

10 Felix Lenders, Christian Kirches, and Hans Georg Bock

References

1. Behnel, S., Bradshaw, R., Citro, D., Dalcin, L., Seljebotn, D., Smith, K.: Cython: The Best of
Both Worlds. Computing in Science Engineering 13(2), 31–39 (2011).

2. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-Integer
Nonlinear Optimization. In: Acta Numerica, vol. 22, pp. 1–131. Cambridge Univ. Press (2013)

3. Bock, H.G., Plitt, K.J.: A Multiple Shooting algorithm for direct solution of optimal control
problems, In: Proceedings of the 9th IFAC World Congress, 242–247 (1984). Pergamon Press

4. Byrd, R., Gould, N., Nocedal, J., Waltz, R.: An algorithm for nonlinear optimization using
linear programming and equality constrained subproblems. Math. Prog. 100(1), 27–48 (2003)

5. Byrd, R., Gould, N., Nocedal, J., Waltz, R.: On the Convergence of Successive Linear-
Quadratic Programming Algorithms. SIAM Journal on Optimization 16(2), 471–489 (2005)

6. Byrd, R., Nocedal, J., Waltz, R.: Knitro: An integrated package for nonlinear optimization. In:
G. Pillo, M. Roma (eds.) Large-Scale Nonlinear Optimization, Nonconvex Optimization and
Its Applications, vol. 83, pp. 35–59. Springer US (2006)

7. Byrd, R., Waltz, R.: An active-set algorithm for nonlinear programming using parametric lin-
ear programming. Optimization Methods and Software 26(1), 47–66 (2011)

8. Duff, I.: MA57 — a code for the solution of sparse symmetric definite and indefinite systems.
ACM Transactions on Mathematical Software 30(2), 118–144 (2004)

9. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Mathematical
Programming 91(2), 239–269 (2002)

10. Fletcher, R., de la Maza, E.S.: Nonlinear programming and nonsmooth optimization by suc-
cessive linear programming. Mathematical Programming 43(1–3), 235–256 (1989)

11. Chin, C.M., Fletcher, R.: On the global convergence of an SLPfilter algorithm that takes EQP
steps. Mathematical Programming 96(1), 161–177 (2003)

12. Fourer, R., Gay, D., Kernighan, B.: A Modeling Language for Mathematical Programming.
Management Science 36, 519–554 (1990)

13. Gill, P., Murray, W., Saunders, M.: SNOPT: An SQP algorithm for large-scale constrained
optimization. SIAM Journal of Optimization 12, 979–1006 (2002)

14. Gould, N., Lucidi, S., Roma, M., Toint, P.: Solving the Trust-Region Subproblem using the
Lanczos Method. SIAM Journal on Optimization 9(2), 504–525 (1999)

15. Gould, N., Orban, D., Toint, P.: CUTEst: a constrained and unconstrained testing environment
with safe threads. Tech. Rep. RAL-TR-2013-005 (2013)

16. GuRoBi Optimization, Inc.: GuRoBi Optimizer Version 6.0 Reference Manual (2014)
17. Han, S.: A globally convergent method for nonlinear programming. JOTA 22, 297–310 (1977)
18. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python

(2001–2015). URL http://www.scipy.org/
19. Kirches, C.: Fast Numerical Methods for Mixed-Integer Nonlinear Model-Predictive Control.

In: H. Bock, W. Hackbusch, M. Luskin, R. Rannacher (eds.) Advances in Numerical Mathe-
matics. Springer Vieweg, Wiesbaden (2011). ISBN 978-3-8348-1572-9

20. Lenders, F., Kirches, C.: pySLEQP Source Code. http://www.iwr.uni-
heidelberg.de/groups/optimus/software/

21. Leyffer, S., Munson, T.: A Globally Convergent Filter Method for MPECs. Preprint
ANL/MCS-P1457-0907, Mathematics and Computer Science Division, Argonne National
Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, U.S.A. (2007)

22. Mahajan, A., Leyffer, S., Kirches, C.: Solving mixed-integer nonlinear programs by QP div-
ing. Technical Report ANL/MCS-P2071-0312, Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, U.S.A. (2011)

23. Mangasarian, O., Fromovitz, S.: Fritz John necessary optimality conditions in the presence of
equality and inequality constraints. J. Math. Anal. Appl. 17, 37–47 (1967)

24. Murtagh, B., Saunders, M.: MINOS 5.51 User’s Guide. Tech. Rep. SOL 83-20R (2003)
25. Nocedal, J., Wright, S.: Numerical Optimization, second edn. Springer Verlag, Berlin Heidel-

berg New York (2006). ISBN 0-387-30303-0 (hardcover)

