
Computational Aspects of

Compressed Sensing

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte

Dissertation

von

Dipl.-Math. Oec. Andreas M. Tillmann
aus Braunschweig

Referent: Prof. Dr. Marc E. Pfetsch
1. Korreferent: Prof. Dr. Dirk A. Lorenz
2. Korreferent: Prof. Stephen J. Wright, PhD
Tag der Einreichung: 30. September 2013
Tag der mündlichen Prüfung: 16. Dezember 2013

Darmstadt 2013
D 17

Meinem Großvater

– Gaya Scienza!

Acknowledgments

Various people contributed in one way or another to the successful completion of
my doctorate. I appreciate all their support and efforts and would like to express
my sincere gratitude.
First and foremost, I thank my advisor Marc Pfetsch for suggesting Sparse Recov-

ery as a field of research for my dissertation, for his advice and intuition regarding
questions worth investigating and, in particular, the freedom he granted me to pur-
sue my own ideas and interests.
I also very much enjoyed working with Dirk Lorenz and would like to thank

him for his advice and help over the years, stimulating discussions and encouraging
feedback, and for gladly agreeing to be a referee for my thesis. Moreover, I thank
Steve Wright for going to the time and effort of reviewing my dissertation. Also, I
am grateful to Stefan Ulbrich and Herbert Egger for serving on my thesis committee,
and to Karsten Große-Brauckmann for acting as committee chair.
I enjoyed the pleasant working environments both in Braunschweig and in Darm-

stadt, for which I would like to thank the Institute for Mathematical Optimization
at TU Braunschweig (in particular, Ronny Hansmann and Thomas Rieger) and
the Research Group Optimization at TU Darmstadt. Special thanks go out to Kai
“5 minutes later” Habermehl for the friendly competition and quips during the (more
or less) simultaneous completion of our theses, and to Katrin Herr for the help with
creating the cross-polytope image for the front cover.
Furthermore, I thankfully acknowledge the financial support I received from the

Deutsche Forschungsgemeinschaft (DFG) during my time on the “SPEAR – Sparse
Exact and Approximate Recovery” research project (2011–2013), and thank Marc
and Dirk again for bringing this project into being in the first place.
Last, but certainly not least, my deepest gratitude goes to my family for their

continuous support over the years—in particular, many thanks to Imke! Not only
has she carefully read the whole manuscript (and her feedback certainly helped
improve it), but in fact, had she not been there to care for me during the past
six months, I probably would never have left our apartment at all anymore, slowly

v

vi Acknowledgments

melting into the couch, incessantly mumbling grumpy mumblings, covered by an
increasingly thick layer of dust, with the laptop growing stuck to my ... well, lap, I
guess. Actually, no—I would have starved long before any of that. So, thank you
very much indeed, and it will be my pleasure to return the favor!

Zusammenfassung

Angesichts der fortschreitenden Digitalisierung in nahezu allen Bereichen des tägli-
chen Lebens bedarf es mehr denn je effizienter Techniken zur Akquise, Speicherung
und Verarbeitung digitaler Daten und Signale. Das noch relativ junge Forschungsge-
biet des Compressed Sensing (CS) verfolgt diesbezüglich – wie der Name bereits ver-
muten lässt – die Idee, die Schritte der Datengewinnung und Kompression zu kombi-
nieren. Ermöglicht wird dies durch Ausnutzung der Tatsache, dass viele verschiedene
Typen von digitalen Signalen eine dünnbesetzte Darstellung besitzen, d.h., sie las-
sen sich gut oder sogar exakt durch wesentlich weniger Koeffizienten beschreiben
als ihre Dimensionalität vermuten ließe. Diese Eigenschaft impliziert hohe Kompri-
mierbarkeit, da die wesentlichen Informationen auf einen kleinen Teil der gesamten
Datenmenge konzentriert sind. Die CS-Theorie basiert essentiell auf der Feststellung,
dass sich solch dünnbesetzte Signale unter bestimmten Voraussetzungen bereits aus
weit weniger Messungen (mit entsprechend verkürztem Datengewinnungsprozess)
als traditionell angenommen sehr gut rekonstruieren lassen.
Die vorliegende Dissertation behandelt (vorrangig) einige grundlegende Aspekte

der Compressed-Sensing-orientierten Rekonstruierbarkeit dünnbesetzter Signale aus
Sicht der mathematischen Optimierung und Komplexitätstheorie.
Die hierbei zentralen Rekonstruktionsprobleme lassen sich mathematisch als die

Suche nach einer (exakten oder näherungsweisen) Lösung eines unterbestimmten li-
nearen Gleichungssystems formulieren, welche die wenigsten von Null verschiedenen
Einträge aufweist. Aus komplexitätstheoretischer Sicht ist diese Art von Problemen
im Allgemeinen „schwer“, d.h., es sind keine Lösungsalgorithmen bekannt, die be-
liebige Probleminstanzen schnell lösen könnten – tatsächlich gilt selbst die Existenz
solcher Verfahren weitläufig als unmöglich. Zu den bahnbrechenden Entdeckungen
der CS-Forschung zählt daher die Identifizierung gewisser Voraussetzungen, unter
denen eine dünnbesetzte Lösung mit effizienten Algorithmen bestimmt werden kann.
Wir untersuchen zunächst die rechnerische Komplexität diverser solcher Bedin-

gungen für Eindeutigkeit und effiziente Rekonstruierbarkeit exakt oder approxima-
tiv dünnbesetzter Signale. Insbesondere zeigen wir, dass die Erfüllung der wich-
tigsten dieser Bedingungen selbst schwer nachweisbar ist. Dies wurde in der CS-

vii

viii Zusammenfassung

Forschungsgemeinde zwar bereits seit Längerem vermutet, jedoch bisher nicht ma-
thematisch rigoros bewiesen. Unsere Argumente zeigen Verbindungen zur Matroid-
und Graphentheorie; zudem diskutieren wir diverse verwandte Probleme und Kom-
plexitätsergebnisse.
Anschließend gilt unser Augenmerk einem der beliebtesten Ansätze zur Ermitt-

lung dünnbesetzter Lösungen unterbestimmter linearer Gleichungssysteme, nament-
lich Basis Pursuit (kurz: BP). Hierbei wird das eigentliche Ziel – die Minimierung
der Nicht-Null-Einträge in der Lösung – ersetzt durch die Minimierung der Summe
der Absolutbeträge (d.h. der `1-Norm) des Lösungsvektors.
Der empirisch und theoretisch belegte Erfolg dieser Vorgehensweise hatte die Ent-

wicklung einer Vielzahl verschiedener Lösungsmethoden zur Folge. Um herauszu-
finden, welcher algorithmische Ansatz „der beste“ ist, erstellen wir umfangreiche
Testdaten mit bekannten Optimallösungen und führen darauf einen detaillierten
numerischen Vergleich etablierter BP-Löser durch.
In diesem Rahmen stellen wir zudem einen heuristischen Optimalitätstest vor, der

ermöglicht, frühzeitig zur (exakten) Optimallösung zu „springen“. Wir geben theo-
retische Erfolgsgarantien für diesen Test und belegen anhand weiterer Rechnungen,
dass sich damit sowohl die Laufzeit als auch die Ergebnisgenauigkeit diverser Löser
deutlich verbessern lässt.
Des Weiteren zeigen wir, dass das BP-Problem im Wesentlichen äquivalent zu

linearer Programmierung ist; während man schon lange weiß, dass Basis Pursuit
als lineares Programm formuliert werden kann, war die umgekehrte Richtung of-
fenbar bisher nicht bekannt. Darüber hinaus diskutieren wir Varianten des Op-
timalitätstests für zwei (beide als Basis Pursuit Denoising bekannte) `1-Norm-
Minimierungsprobleme, die kleinere Verletzungen der Gleichungsrestriktionen ge-
statten und daher auf approximativ (nicht exakt) dünnbesetzte Signale beziehungs-
weise fehlerbehaftete Messungen ausgelegt sind.
In unserem Rechenvergleich wird insbesondere auch ein eigener Löser, ISAL1,

betrachtet. Dieser Algorithmus ist eine Spezialisierung eines Lösungsverfahrens (ge-
nannt ISA) für allgemeine konvexe Minimierungsprobleme mit Nebenbedingungen,
das wir im letzten Kapitel des Hauptteils dieser Dissertation vorstellen. ISA ist
eine Abwandlung der klassischen projizierten Subgradientenmethode aus der nicht-
glatten Optimierung, in der wir die üblichen exakten Projektionen der Iterations-
punkte auf die zulässige Menge durch adaptive approximative Projektionen ersetzen.
Wir beweisen die Konvergenz des ISA-Verfahrens für verschiedene Arten von Schritt-
weiten, geben diverse Beispielkonstruktionen adaptiver Projektionsoperatoren und
diskutieren insbesondere die Konkretisierung der allgemeinen Methode hinsichtlich
Basis Pursuit (und BP Denoising Varianten), sowie unsere Implementierung ISAL1
des hieraus resultierenden Algorithmus.

Zusammenfassung ix

Abschließend erläutern wir offene Fragen und potentielle Erweiterungen bezüglich
der in der Dissertation behandelten Aspekte und geben einen Ausblick auf mögliche
weiterführende oder verwandte Forschungsthemen.

Contents

1 Introduction 1
1.1 Finding Sparse Exact and Approximate Solutions to Underdeter-

mined Linear Equation Systems . 3
1.2 Contributions and Outline of the Thesis 9
1.3 Notation and Preliminaries . 11

2 Recovery Conditions and Their Computational Complexity 21
2.1 Incoherence of the Sensing Matrix 22
2.2 The Exact Recovery Condition (ERC) 23
2.3 The Spark of a Matrix . 24

2.3.1 Complexity of Spark Computation 26
2.3.2 Related Problems . 33

2.4 The Restricted Isometry Property (RIP) 36
2.4.1 Complexity of RIP-based Recovery Conditions 37

2.5 The Nullspace Property (NSP) . 49
2.5.1 Complexity of Computing the Nullspace Constant 51

2.6 Summary . 53

3 Solving Basis Pursuit 57
3.1 Heuristic Optimality Check . 59

3.1.1 Theoretical Foundation . 59
3.1.2 Practical Considerations . 62
3.1.3 HOC Success Guarantees . 64

3.2 Algorithms for Exact `1-Minimization 65
3.2.1 ISAL1 . 66
3.2.2 The Homotopy Method . 67
3.2.3 `1-Magic . 68
3.2.4 SolveBP/PDCO . 69
3.2.5 SPGL1 . 69
3.2.6 YALL1 . 69

xi

xii Contents

3.2.7 CPLEX . 70
3.2.8 SoPlex . 70

3.3 Test Set Description . 70
3.4 Computational Solver Comparison 75

3.4.1 Numerical Results . 76
3.4.2 Impact of the Heuristic Optimality Check 88
3.4.3 The Behavior of `1-Homotopy 93
3.4.4 Conclusions . 96

3.5 Equivalence of Basis Pursuit and Linear Programming 97
3.5.1 Related Work . 97
3.5.2 Preliminaries . 99
3.5.3 The Reduction . 101
3.5.4 Detailed Complexity Analysis 107

3.6 Excursion into Basis Pursuit Denoising 114
3.6.1 HOC for BP Denoising . 115
3.6.2 HOC for `1-Regularized Least-Squares 118
3.6.3 Numerical Experiments . 120

4 ISA Framework for Nonsmooth Convex Optimization 131
4.1 Motivation, Scope and Preliminaries 132

4.1.1 Related Work . 134
4.1.2 Types of Adaptive Approximate Projections 135

4.2 ISA with Predetermined Step Sizes 138
4.3 ISA with Dynamic Step Sizes . 146

4.3.1 Convergence Proofs . 151
4.4 Discussion: Extensions of the ISA Framework 161

4.4.1 Integration of ε-Subgradients 162
4.4.2 Computable Bounds for the Distance to the Optimal Point Set 163
4.4.3 Variable Target Values . 164

4.5 Examples of Adaptive Approximate Projection Operators 169
4.5.1 Linear Equality Constraints 169
4.5.2 Ellipsoids . 174
4.5.3 Denoising Constraints . 176
4.5.4 Convex Expected Value Constraints 185

4.6 Application in Compressed Sensing: ISAL1 190
4.6.1 Implementation Details . 196

5 Concluding Remarks 201
5.1 Intractability of Recovery Conditions: Subtleties and Open Problems 201
5.2 Test Sets, Solver Comparisons and HOC 203

Contents xiii

5.3 Further Extensions and Applications of ISA 206
5.4 Sparse Recovery via Branch & Cut 207
5.5 Other Related Sparsity Problems . 208

Bibliography 211

List of Figures xv

List of Tables xvii

List of Algorithms xix

CHAPTER 1
Introduction

In today’s world, we face a huge and ever-increasing amount of high-dimensional
digital data and the challenges arising from the need to effectively acquire, store
and process such data. With respect to these tasks, a crucial observation is that
one often does not require the full amount of information contained in some digital
object to be able to recognize, or reconstruct, its content. In other words, a suitable
representation of the data is often sparse in the sense that it contains only a few
significant components that already capture most of the information, which opens
possibilities for data reduction.
For instance, many signal compression methods selectively discard large parts of

the data in order to retain a suitable approximation of the original. Such com-
pression is called “lossy”, since parts of the true data are irretrievably lost and are
not contained in the compressed signal. Thus, there clearly is a trade-off between
the retained amount of information and the quality of the resulting approximate
signal. Familiar examples for lossy compression are the ubiquitous JPEG compres-
sion standard from image processing, video codecs like MPEG, or the MP3 audio
compression. All of them can provide signal representations that are nearly in-
distinguishable from the original digital object by human perception but require
dramatically fewer storage space.
The observation that it seems wasteful to first collect the complete data set and

then just neglect large portions of it (to obtain the desired compressed object)
inspired the development of a paradigm now known as Compressed Sensing (CS),
or Compressive Sampling, see, e.g., [89, 47, 49, 52, 109, 165, 111]. Here, the idea
is to perform a sort of compression already during data acquisition. Under the
assumption that a signal indeed has an exact or approximate sparse representation,
this can be accomplished by taking only a surprisingly small number (compared

1

2 Chapter 1. Introduction

to the full information content) of linear measurements, which still allow for the
recovery of the significant signal features but circumvent the traditional two-stage
sampling and compression process. Importantly, the reconstruction can in fact be
achieved by efficient algorithms, under certain conditions on signal sparsity and the
conditioning of the sampling operations.
Since its development about a decade ago, the CS concept has already been suc-

cessfully employed in a wide range of sampling and signal processing applications.
One particular well-known example is biomedical image processing, or more pre-
cisely, (X-ray) computed tomography and magnetic resonance imaging; see, e.g.,
[178, 179, 169]. Here, one wishes to acquire sharp high-resolution (cross-sectional)
images of certain inner parts of the body, say, the brain. The image quality is clearly
decisive for accurate diagnosis, e.g., early identification or precise localization of
tumor cells. Compressed Sensing methodologies can help speed up the scanning
process while maintaining a high quality of the results, which is desirable for eco-
nomic purposes as well as to reduce the patients’ exposure to harmful radiation.
Other examples of the application of CS and sparse recovery results can be found in
radiotherapy treatment planning [268], astronomical signal processing [33] and visu-
alization of outer-space phenomena [254], geophysical/seismic imaging [132], radar
[131, 214], error correction in data transmission [50], audio source separation [210],
morphological component analysis of images and other image processing tasks such
as denoising and inpainting (cf., for instance, [231, 100]), to name just a few.
It is nigh impossible to provide a comprehensive overview of the vast amount of

research on sparse representations, sensing and recovery schemes, CS applications
and extensions that was conducted over the last years. In the following, we will
therefore only touch upon those aspects that are closely tied to the scope of this
thesis: Computational aspects of (efficient) sparse reconstruction, in the usual finite-
dimensional real-valued setting. (Although it is noteworthy that some CS-based
results extend to infinite dimensions and/or the field of complex numbers, we will
not concern ourselves with such extensions.) For more general introductions to
the field of Compressed Sensing and its connections to sparse representation theory
and other fields like sampling or nonlinear approximation theory, we refer to the
recent first books on the subject, [111, 165, 108, 100], and also mention the articles
[88, 89, 47, 52, 40, 109, 64]; many more papers and other material can be found
online, e.g., at the CS Resources webpage of the Rice University [73], the Nuit
Blanche blog [53] and the Wiki pages [230].

1.1. Finding Sparse Solutions to Underdetermined Linear Systems 3

1.1 Finding Sparse Exact and Approximate Solutions
to Underdetermined Linear Equation Systems

Besides the original name-giving principle, the term Compressed Sensing is now of-
ten (but somewhat imprecisely) used as a general catchphrase for a broad variety
of related aspects regarding sparse representations of digital signals and their effi-
cient recovery. This can be explained by the paramount importance of these latter
concepts throughout CS theory, and in particular, of the problem to find a sparsest
solution to an underdetermined linear equation system, i.e.,

min ‖x‖0 s.t. Ax = b, (P0)

where A ∈ Rm×n with m ≤ n, b ∈ Rm, and ‖x‖0 denotes the number of nonzeros
in a vector x. Typically, the matrix A is assumed to have full rank m (because
otherwise Ax = b might not have a solution at all), and m < n. Then, the system
Ax = b has infinitely many solutions, and (P0) seeks one with as few nonzero entries
as possible. The idea is that if the original signal x∗ of interest is highly sparse then
it can be encoded, or “compressively sampled”, by b := Ax∗ and recovered as the
unique solution of (P0).
In practice, a signal will hardly be exactly sparse (such that most entries are

truly equal to zero), but instead only compressible, i.e., approximately sparse in
the sense that it contains many insignificant entries that can be dropped without
sacrificing too much valuable information. The following model adapts to this setting
by relaxing the equality constraint to allow small (`2-norm) deviations:

min ‖x‖0 s.t. ‖Ax− b‖2 ≤ δ, (Pδ0)

for some δ > 0. (Clearly, for δ = 0, we obtain (P0) again.) Often, this second
model is also used in the context of denoising, where one assumes that the linear
measurements Ax∗ are contaminated by additive noise, i.e., b = Ax∗+r with a noise
vector r. Appropriate choices for δ are often available from the application, e.g.,
from certain statistical properties of the noise vector r. (Note that, depending on the
noise model, other norm choices in the constraint of (Pδ0) may be preferable; see, e.g.,
[104, Section 4.3].) Since solution uniqueness is not as well-defined for (Pδ0) as for
the exact sparse recovery problem (P0)—tiny perturbations of the nonzero entries of
an optimal solution typically yield alternate optimal solutions—the focus here lies
on stable and robust recovery : We wish to obtain a solution that is reliably close to
the (unknown) original signal x∗ both in terms of sparsity and the magnitudes of
its entries; see, e.g., [91, 64, 100, 165] for detailed discussions.

4 Chapter 1. Introduction

Remark 1.1. As alluded to earlier, certain classes of signals are expected to be
sparsely representable—at least approximately—in some known (non-canonical) ba-
sis B, i.e., not the signal x∗ itself but Bx∗ has few significant entries. For instance,
natural images are well-known to typically have sparse approximate representa-
tions with respect to certain wavelet transforms (cf. [182]); this is exploited, e.g.,
in state-of-the-art image compression or denoising algorithms, see (for example)
[231, 100, 87, 165, 182]. With such prior information, a problem of interest could
actually read, e.g., min{ ‖Bx‖0 : Ax = b }, and indeed, if B is not a basis, this
problem becomes genuinely different from (P0) (cf. [102, 191]). Similarly, one can
concatenate multiple bases into one so-called dictionary (i.e., an “overcomplete” ma-
trix with more columns than rows) or perform dictionary learning to directly obtain
matrices that offer sparse representability for certain signal types from specific tasks
such as, e.g., face recognition [1, 255, 238]. Throughout this thesis, we will not delve
into the technical aspects of these extensions, or others such as additionally incor-
porating nonnegativity constraints, and focus our attention on the general problems
(P0) and (Pδ0).

Unfortunately, both sparse recovery problems (P0) and (Pδ0) are generally NP-hard
(in the strong sense), see [MP5] in [115], [192, Theorem 1] and [82, Theorem 2.1].
Thus, unless the most widely believed theoretical complexity assumption—P6=NP—
turns out to be wrong, there exist no (pseudo-)polynomial-time algorithms to solve
either problem. In fact, even approximating a solution is considered intractable,
see [6, 7].
The apparently only serious effort to come up with something more sophisticated

than plain exhaustive search (through all exponentially many column subsets) to
exactly solve general instances of (P0) was made in [143], where this problem (and a
linearly-constrained variant of (Pδ0)) was tackled by a Branch & Cut method applied
to an integer programming reformulation. However, this turned out to be reasonably
efficient only for very small problem instances and is therefore not suitable for large-
scale “real-world” problems. (Preliminary experiments by the author of this thesis,
based on a different exact integer programming model of (P0), were even more
discouraging.)
Inspired by the applications in CS, and justified by the computational intractabil-

ity of (P0) and (Pδ0), various (polynomial-time) heuristics for sparse recovery prob-
lems have been proposed, along with several theoretical results—sparse recovery
conditions—on when such methods actually succeed in obtaining or stably approx-
imating the respective sparsest representations. Most of these heuristic approaches
can be broadly classified into two main categories: Greedy algorithms or relaxation
(and regularization) methods.
A prominent role among the greedy heuristics is taken by the so-called (Orthogo-

1.1. Finding Sparse Solutions to Underdetermined Linear Systems 5

nal) Matching Pursuit techniques, see, e.g., [183, 83, 207, 239, 94, 196, 195]. Here,
the general idea is to approximate the optimal solution by iteratively increasing
the support S = supp(x) := { j ∈ [n] : xj 6= 0 }, starting with the empty set and
successively including indices chosen by some locally (but not globally) optimal rule
until the requirement ‖Ax− b‖2 ≤ δ, or Ax = b, is met. For instance, one can
pick j /∈ S such that the residual error ‖Ax− b‖2 achievable by allowing nonzero
entries in x only on S ∪ {j} is reduced as much as possible. The hope is that few
iterations suffice to reach the feasibility goal, leading to a sparse solution since one
keeps xj = 0 for j /∈ S throughout this process.
Relaxation1 models replace the discrete objective function ‖x‖0 by some con-

tinuous approximation. For instance, the contribution [184] proposed the function
fc(x) =

∑n
j=1(1−e−c|xj |) for a parameter c > 0 (e is the Euler constant), and shows

that there exists a value of c for which the solutions of min{ fc(x) : Ax = b } and
(P0) coincide.
Using the Euclidean (`2-)norm, one obtains the so-called “minimum energy” solu-

tion, which is useful in many contexts, but usually not sparse at all. The work [58]
may be considered a starting point for the intensified research on sparse recovery
that eventually also spawned the field of Compressed Sensing; it showed empirically
that sparse solutions can sometimes be obtained by solving

min ‖x‖1 s.t. Ax = b, (P1)

where ‖x‖1 =
∑n
j=1|xj | is the `1-norm. This problem, called Basis Pursuit (BP),

and its denoising counterpart

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ, (Pδ1)

are among the most popular approaches to sparse recovery in CS today and were
considered in many ground-breaking works that defined the field, see, e.g., [92, 90,
126, 50, 49]. The phenomenon that the (unique) optimal solution to (P1) also solves
(P0) is known as `0-`1-equivalence, and can be brought about by several sparse
recovery conditions.
There is a nice geometric intuition for why `1-minimization promotes sparsity in

the solution (see Figure 1.1 for a visualization): The set of solutions of an under-
determined system Ax = b forms an affine subspace of Rn, e.g., a line in R2. A
minimum-norm vector residing in this subspace can be found by increasing the (ra-
dius r of the) norm ball {x : ‖x‖ ≤ r } around the origin until it “touches” the set
{x : Ax = b }. Intuitively, the pointedness of the `1-ball (which is, e.g., diamond-

1This use of the term “relaxation” differs from the usual one in optimization theory, where it
typically describes relaxation of constraints, e.g., replacing x ∈ {0, 1} by x ∈ [0, 1].

6 Chapter 1. Introduction

{x : Ax = b}

0

0

x1

x2

(a) Sparse solution of Ax = b for `p-mini-
mization with p ∈ {0.3, 0.6, 1} (dark to light
shapes, respectively).

{x : Ax = b}

0

0

x1

x2

(b) Dense solutions of Ax = b for `p-mi-
nimization with p = 2 (disc) or p = ∞
(square).

Figure 1.1. Geometric intuition: Why `p-norm minimization promotes solution sparsity
for 0 < p ≤ 1, but typically yields dense solutions for p ≥ 2.

shaped in R2) therefore leads to a sparse solution. In fact, similar sparsity-inducing
properties hold for the `p-(quasi-)norms ‖x‖p = (

∑n
j=1|xj |p)1/p with 0 < p < 1,

cf. Figure 1.1(a); however, these functions are nonconvex and the corresponding
problems min{ ‖x‖p : Ax = b } are actually strongly NP-hard [116], like (P0) it-
self. On the other hand, (P1) is a convex optimization problem (in fact, it can be
restated as a linear program), and can thus be solved efficiently. Indeed, it can
be seen as the closest convex approximation of (P0), since limp→0‖x‖pp = ‖x‖0.
Moreover, despite being nonsmooth and therefore somewhat harder to handle (an-
alytically and algorithmically) than functions which are differentiable everywhere,
the `1-norm is preferable to the other convex `p-norms with 1 < p < ∞ with
respect to sparse recovery: Increasing the norm balls for the latter norms, one usu-
ally reaches Ax = b at a non-sparse point (the same holds true for the `∞-norm,
‖x‖∞ = max{ |xj | : 1 ≤ j ≤ n }); cf. Figure 1.1(b).
The potential of `1-minimization for CS sparse reconstruction is further illustrated

by the synthetic examples depicted in Figures 1.2 and 1.3, respectively: Figure 1.2
shows how a sparse vector can be exactly recovered via (P1) whereas `2-minimization
yields a poor reconstruction. In Figure 1.3, we see a grayscale image with sparse
coefficient vector; we corrupted the original by adding (artificial) noise and see that
a very good approximation of the true image can be achieved, using (Pδ1) with δ

attuned to the noise norm, from relatively few linear (Gaussian) measurements of

1.1. Finding Sparse Solutions to Underdetermined Linear Systems 7

Figure 1.2. A relatively sparse “signal” x∗ ∈ R256 with ‖x∗‖0 = 30 (top) and the recon-
structions obtained via min{ ‖x‖2 : Ax = b } (middle) and (P1) (bottom) from 128 (Gaus-
sian) linear measurements b := Ax∗. Basis Pursuit recovers x∗ exactly, but `2-minimization
fails.

the corrupted image.
While we will refer to (Pδ1) as Basis Pursuit Denoising, this name was originally

(in [58]) affixed to the problem

min 1
2‖Ax− b‖

2
2 + λ ‖x‖1 (QPλ)

(with λ > 0). In fact, most algorithms for BP Denoising consider the latter formula-
tion because, as an unconstrained problem, it is generally easier. On the other hand,
the parameter δ in (Pδ1) offers a more natural interpretation than λ in (QPλ), as it
directly models the norm (“energy”) of the noise vector. For certain λ and δ, the
two problems actually become equivalent, but the parameter relationship is implicit
(it depends on the respective solutions) and hence generally not known a priori,
see, e.g., [245, 107, 173, 111]. The problem (QPλ) can also be seen as a regular-
ization of the inverse problem to recover an unknown x∗ from (noisy) incomplete
measurements Ax = b := Ax∗(+r): Given the infinite number of possible solutions
for an underdetermined linear system (if it has one at all), this task is generally
ill-posed and we need to impose some assumption, like sparsity, to get a well-defined
formulation. As opposed to (P0) and (Pδ0), which enforce consistency with the mea-

8 Chapter 1. Introduction

(a) Original image (b) Corrupted image (c) CS reconstruction

Figure 1.3. Stylized CS denoising problem: The original 134× 150 pixel image has only
787 nonzeros among its 20100 coefficients (in the canonical basis). Exploiting sparsity,
near-perfect recovery is achieved from linear measurements of only about 20% of the noisy
data. (Image courtesy of Mathias Krisp / blowfish.)

surements via explicit constraints, the regularization approach combines the data
fidelity term (‖Ax− b‖2) and the regularizing term into a single objective function,
and the parameter λ controls the trade-off between the two terms. Indeed, the
`1-regularization term in (QPλ) serves the same purpose as the `1-objective in the
Basis Pursuit problems, namely, inducing sparsity in the solution.
Several related problems also became prominent in CS applications in statistics

and signal processing, and can be used to obtain sparse approximate solutions; for
instance, the Least Absolute Shrinkage and Selection Operator (LASSO) [235]

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ, (LSτ)

or the Dantzig Selector [51]

min ‖x‖1 s.t. ‖A>(Ax− b)‖∞ ≤ η. (DSη)

One can interpret (QPλ) as a Lagrangean form of (LSτ), and also show that for
certain parameter values, (DSη) and (QPλ) are equivalent [10] (see also [256]).
There exist various other (algorithmic) approaches to sparse recovery, see

[242, 108, 111] for recent surveys. Many methods involve thresholding operations
of a greedy flavor in which a (fixed or variable) threshold value ε is used to decide
which entries of a solution candidate x are treated as significant or irrelevant. For in-
stance, a very simple, yet often effective, strategy is the Iterative Hard Thresholding
algorithm (see [32]), which alternates a gradient step to reduce the error ‖Ax− b‖2
and the projection onto the set of k-sparse vectors (i.e., those with at most k nonze-

1.2. Contributions and Outline of the Thesis 9

ros, for a fixed choice of k), given simply by keeping the k components with largest
absolute values while setting the rest to zero. Other popular thresholding-related
strategies are discussed in, e.g., [87, 79, 27, 256, 111].

1.2 Contributions and Outline of the Thesis

The central questions in Compressed Sensing can be briefly summarized as: How
many linear measurements (and of which type) are sufficient to capture the informa-
tion contained in a sparse signal? Given a set of such measurements, how (and up to
which sparsity levels) can sparse exact or approximate solutions of the correspond-
ing underdetermined linear equation systems indeed be successfully, and efficiently,
recovered?
In this thesis, we will focus on the second question, i.e., our primary concern is

sparse recovery. Our contributions come in three main parts:
• First, in Chapter 2, we discuss several important conditions for successful re-

covery of sparse (exact or approximate) solutions by efficient algorithms. In
a very broad sense, such conditions can be classified into two groups: Some
ensure that specific k-sparse vectors can be recovered, while most conditions
yield uniform k-sparse recovery (i.e., every vector with at most k nonzero
entries can be efficiently recovered). Moreover, many popular sparse recov-
ery conditions are only sufficient in general, although some are indeed also
necessary.
The focus of our interest lies on the computational complexity of sparse re-
covery conditions. While some are easily evaluated, the more powerful ones
had long been rumored to be intractable, but rigorous proofs were lacking.
We confirm these conjectures by a series of NP-hardness results, i.e., we show
that several ubiquitous conditions for uniqueness and recoverability of sparse
solutions cannot be evaluated in polynomial time, unless P=NP. The main
results of Chapter 2 were obtained jointly with Marc Pfetsch, see [237].

• Due to its well-founded popularity, an abundance of different algorithms to
solve the Basis Pursuit problem (P1) has been proposed over the last decade
or so. In Chapter 3, we investigate the question which one of these methods
is “the best”. (As we will see, the answer is somewhat ambiguous.)
To that end, we present a large test set of (P1) instances with known (unique)
optimal solutions, and numerical results of an extensive computational com-
parison of various state-of-the-art `1-solvers on this test set. We also contribute
a new solver, ISAL1, which turns out to be competitive in some settings.

10 Chapter 1. Introduction

Moreover, we introduce a novel heuristic optimality check (HOC) that often-
times allows for “jumping” to the optimal point long before a solver (practi-
cally) converges. Indeed, for several of the considered solvers, our numerical
results show that HOC can significantly improve both accuracy and running
time. We also establish theoretical guarantees for HOC success.
The above-described work presented in Chapter 3 emerged from a collabora-
tion with Dirk Lorenz and Marc Pfetsch, and was previously reported in [174].
Additionally, we will establish that linear programming (LP) and Basis Pur-
suit problems are equivalent in the sense that one can solve any instance of
either one problem via a suitable instance of the other. While the fact that
(P1) can be reformulated as an LP is well-known, the converse result appears
to be new. Furthermore, we discuss extensions of the HOC procedure to the
Basis Pursuit Denoising problem (Pδ1) and its variant (QPλ), and present some
numerical results indicating its potential usefulness in the respective settings.

• The solver ISAL1 mentioned earlier is a specialization to `1-minimization prob-
lems of a new general-purpose framework for (nonsmooth) constrained convex
optimization, which we develop in Chapter 4. The method is an extension
of the classical projected subgradient algorithm: The usual exact projections
of iterate points onto the feasible set are replaced by adaptive approximate
projections. Since inexact projection can result in infeasible iterates, we call
the method “infeasible-point subgradient algorithm” or simply “ISA”.
We present several variants of this ISA framework, provide corresponding con-
vergence proofs, and give examples for the construction of adaptive approxi-
mate projection operators. In particular, we discuss ISAL1 in detail, i.e., how
ISA can be adapted to (P1) and (Pδ1) (and some related denoising models),
thus building the bridge back to the prevalent CS sparse recovery theme of
the thesis.
Many results of Chapter 4 were developed together with Dirk Lorenz and
Marc Pfetsch and can be found in [175]. We complement this work with
a “variable target-value” version of ISA, additional examples for projection
operators, and more details about the specialization ISAL1 (in particular, the
extension to (Pδ1) was not treated previously).

Finally, Chapter 5 contains closing remarks on some open questions and possible
extensions of the material covered in this thesis, and provides pointers to further
lines of research and related problems.

Remark 1.2. Further work by the author that did not find its way into this thesis
concerned the strong NP-hardness of projection onto the set of so-called cosparse
vectors, {x : ‖Ωx‖0 ≤ k } with some matrix Ω, which arises in algorithmic ap-

1.3. Notation and Preliminaries 11

proaches to certain alternative sparse representation models, see [236] (joint work
with Rémi Gribonval and Marc Pfetsch). Moreover, the author was involved in ap-
plying CS-based ideas to the construction of 3D-visualizations of planetary nebulae,
see [254] (a collaboration with Stephan Wenger, Marco Ament, Stefan Guthe, Dirk
Lorenz, Daniel Weiskopf and Marcus Magnor).

1.3 Notation and Preliminaries

In the following, we shall fix some notation and terminology, and recall several useful
basic results, that will be used throughout this thesis. Since our notation is mostly
standard, the so-inclined reader may of course skip this section entirely, and consult
it only should the need arise to look up unfamiliar expressions.

Fields and Sets

By C, R, Q, Z and N we denote the fields of complex, real, rational, integer and
natural numbers, respectively (the corresponding n-dimensional vector spaces are
marked with an additional superscript n), with the convention that 0 /∈ N; the
binary field is denoted by F2. We will often abbreviate [n] := {1, 2, . . . , n} ⊂ N for
some n ∈ N. Closed, open, and half-open intervals of real numbers are specified as
[a, b], (a, b), and [a, b) or (a, b], respectively. The empty set is denoted by ∅. The
cardinality of a (discrete) set S is |S|; note that for scalars α, |α| means its absolute
value. Moreover, for a subset S ⊆ T of some set T , its complement in T is denoted
by Sc = T \ S (the dependency on T will be contextually clear).

Vectors, Matrices and Linear Algebra

For a vector x or matrix A, their respective transposes will be denoted by x> and A>.
Any vector x we encounter will be a column vector; thus, x> always describes a row
vector. The all-ones vector will be denoted by 1 and the identity matrix by I;
sometimes we add a subscript indicating the size (e.g., Ik for the k × k identity
matrix). Moreover, the number 0 will occasionally also denote the all-zero vector
or matrix of suitable size. A diagonal matrix with entries α1, . . . , αn along the
diagonal is denoted by Diag(α1, . . . , αn). The element in row i and column j of
a matrix A is denoted by aij (or ai,j); the i-th row is written as a>i and the j-th
column as Aj . A submatrix of A induced by a subset C of its columns is denoted
by AC ; similarly, xC denotes the vector consisting of entries xj with j ∈ C of a

12 Chapter 1. Introduction

vector x. Occasionally, we consider submatrices obtained by restriction to a row
subset R and a column subset C, which are denoted by ARC (or AR,C).
The sign-vector sign(x) contains entries ±1 in accordance with the signs of the

nonzero entries of x, and zeros wherever xj = 0. The support of a vector is the set
of indices of its nonzero entries; we will sometimes write supp(x).
For a matrix A ∈ Rm×n, we denote its column space (or range) by

R(A) := { y ∈ Rm : y = Ax for some x ∈ Rn } ⊆ Rm

(thus, the row space of A is R(A>)) and its nullspace (or kernel) by

N (A) := {x ∈ Rn : Ax = 0 } ⊆ Rn.

Recall that N (A) = R(A>)⊥, i.e., the nullspace of A is the orthogonal complement
of its row space: x>z = 0 for all x ∈ N (A), z ∈ R(A>) (see, e.g., [38, p. 646]).
The rank of A is the maximal size of a collection of linearly independent columns,

or equivalently the maximal number of linearly independent rows (i.e., rank(A) =

rank(A>)). Thus, rank(A) ≤ min{m,n} with equality if and only if A has full rank.
We will sometimes use the terms column rank and row rank to remind of which size
parameter of A is rank-defining. If A is full-rank and square (m = n), it is invertible;
we denote its inverse by A−1. A useful generalization of the matrix inverse is the
(Moore-Penrose) pseudo-inverse A† (see, e.g., [38, Section A.5.4]); in particular, if
rank(A) = m < n then AA> is invertible and A† = A>(AA>)−1 (so that AA† = I),
if rank(A) = n < m then A† = (A>A)−1A> (whence A†A = I) analogously, and
if A is invertible, A† = A−1.
The singular values of A are denoted by σi(A) (i ∈ [min{m,n}]) and, if m = n,

its eigenvalues by λi(A) (i ∈ [n]). A (square) matrix is positive semi-definite if
x>Ax ≥ 0 for all vectors x (or equivalently, all eigenvalues of A are nonnegative),
and positive definite if for all x 6= 0, x>Ax > 0 (all eigenvalues are positive).

Functions, Convexity, (Sub-)Differentiability, Optimization and Duality

A function f : Rn → R is convex if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) holds
for all x, y ∈ Rn and any λ ∈ [0, 1]. A set S ⊆ Rn is convex, if λx + (1 − λ)y ∈ S
for all x, y ∈ S and λ ∈ [0, 1].
The domain dom f of a function f is the subset of Rn on which it is defined,

i.e., f : dom f → R. It is often convenient to have a function defined on all of Rn,
which can be achieved by extended-value extension (see, e.g., [38, Section 3.1.2]): Set
f̂(x) := f(x) for x ∈ dom f , and f̂(x) :=∞ for all x /∈ dom f ; then, f̂ : Rn → R :=

R∪{∞} with effective domain dom f̂ := {x : f̂(x) <∞} = dom f . In particular, f̂

1.3. Notation and Preliminaries 13

is convex if f is convex over its domain and dom f is itself a convex set.
Throughout this thesis, we will deal almost exclusively with proper functions

(i.e., f with dom f 6= ∅), and therefore usually do not state this explicitly. More-
over, for notational convenience, we will sometimes make an implicit transition of a
(convex) function f to its extended-value extension f̂ , i.e., work with and refer to f
as if it were f̂ . This should not cause any confusion. (Also, if necessary in this con-
text, we implicitly adhere to standard extended arithmetic and ordering involving
expressions containing ∞, e.g., ∞+∞ =∞ and ∞ ≤∞.)
The gradient of a smooth (continuously differentiable) function f at a point x

is denoted by ∇f(x). For a convex, but not necessarily smooth, function f , a
subgradient of f at x is any vector h ∈ Rn satisfying the subgradient inequality

f(y) ≥ f(x) + h>(y − x) for all y ∈ Rn. (1.1)

The collection of all subgradients of f at x is called the subdifferential, denoted
by ∂f(x); it is always nonempty, convex and compact (see, e.g., [24, Proposi-
tion B.24]). Moreover, if f is differentiable at x, then ∂f(x) = {∇f(x)}.
The (extended-valued) indicator (or characteristic) function ιX of a setX ⊆ Rn is

given by ιX(x) := 0 if x ∈ X, and ιX(x) :=∞ otherwise. Clearly, ιX : Rn → R with
dom ιX = X; thus, ιX is proper if and only if X 6= ∅. Moreover, ιX is convex on Rn.
The indicator function is useful, for instance, to move constraints of an optimization
problem into the objective function (which then is also extended-valued); see, e.g.,
Lemma 1.5 below.
The (possibly extended-valued) conjugate function f∗ of a function f : dom f → R

(or its extension f̂ : Rn → R) is given by

f∗(y) := sup{ y>x− f(x) : x ∈ dom f } (= sup{ y>x− f̂(x) : x ∈ Rn });

it is always convex and its (effective) domain is the set of those y for which the
supremum is finite. Conjugate functions play an important role, e.g., in duality
theory for convex optimization problems, as the following result shows (this is an
instance of Fenchel-Rockafellar duality, see, e.g., [41, 124, 34, 219, 218]).

Lemma 1.3. Let f : Rn → R and g : Rm → R be two proper convex functions,
and let A ∈ Rm×n be a matrix. The dual problem of min{ f(x) + g(Ax) : x ∈ Rn }
reads max{−f∗(−A>y)− g∗(y) : y ∈ Rm }. The dual (maximization) problem pro-
vides a lower bound for the primal (minimization) problem. Strong duality (i.e.,
equality of the objectives) holds under mild assumptions, e.g., if either dom f = Rn

or dom g = Rm, Ax ∈ dom g for some x ∈ Rn and both optima are finitely at-
tained. Moreover, under strong duality, a primal-dual optimal pair (x∗, y∗) obeys

14 Chapter 1. Introduction

the (saddle-point) relation minx (Ax)>y∗ + f(x) − g∗(y∗) = minx maxy (Ax)>y +

f(x)− g∗(y) = maxy minx (Ax)>y+ f(x)− g∗(y) = maxy (Ax∗)>y+ f(x∗)− g∗(y).

The stated conditions to ensure strong duality can be found, for instance, in [111,
Theorem B.30]; other (and weaker) conditions are given in, e.g., [69, Remark 2.1] and
other works on (Fenchel-Rockafellar) duality such as those listed above. The above
saddle-point property stems from Lagrangean duality theory, of which the above
duality principle is a special case, derived from the primal-equivalent constrained
problem obtained by substituting z := Ax (see [111, Appendix B]); for details and
many more results about Lagrange multiplier and duality theory, we refer to [221,
38, 24].
Similar very well-known results pertain to linear programs, see, e.g., [62, 224, 128];

for instance, the dual problem of max{ c>x : Ax ≤ b, x ≥ 0 } reads min{ b>y :

A>y ≥ c, y ≥ 0 }, and the two problems share the same (finite) optimal value if and
only if both are feasible and bounded (this also holds in the setting of Lemma 1.3).
For an application of duality, see, e.g., Lemma 1.5 below.
The normal cone NX(x) = { y : y>(z − x) ≤ 0 ∀ z ∈ X } of a closed convex setX

at a point x ∈ X can be used to state the following well-known optimality condition,
see, e.g., [24, Proposition B.24(f)], [166, Proposition 2.5] or [221, Theorem 3.33].

Lemma 1.4. Let f : Rn → R be a proper convex function, and let X ⊂ Rn be a
closed convex set with X ∩ dom f 6= ∅. A point x∗ ∈ X is optimal for the problem
min{ f(x) : x ∈ X } if and only if −∂f(x∗) ∩NX(x∗) 6= ∅.

Vector and Matrix Norms

We let ‖·‖p : Rn → R, x 7→ ‖x‖p :=
(∑

i∈[n]|xi|p
)1/p; for 1 ≤ p <∞, this gives the

usual (convex) `p-norm. In particular, we have the

`1-norm ‖x‖1 =

n∑
i=1

|xi| = sign(x)>x,

the Euclidean/`2-norm ‖x‖2 =
(n∑
i=1

x2
i

)1/2

=
√
x>x

and, extending the notation as usual, the `∞-norm ‖x‖∞ := max{ |xi| : i ∈ [n] }.
Although often also called “`p-norm”, ‖·‖p with 0 < p < 1 is only a quasinorm

(and nonconvex), because—unlike true norms—it can violate the triangle inequal-
ity ‖x+ y‖ ≤ ‖x‖ + ‖y‖. Similarly, we let ‖x‖0 := |supp(x)| denote the number
of nonzero elements of a vector x, and adopt the conventional slight abuse of ter-

1.3. Notation and Preliminaries 15

minology and call it `0-norm. Note that ‖·‖0 is also not a proper norm, since
‖αx‖0 6= |α| · ‖x‖0 for scalars α 6∈ {0,±1}.
The dual norm to ‖·‖p (1 ≤ p ≤ ∞) is ‖·‖∗p = ‖·‖q with q such that 1/p+ 1/q = 1

(with 1/∞ = 0 per convention); in particular, ‖·‖∗2 = ‖·‖2 and ‖·‖∗1 = ‖·‖∞.
The `p-norms induce corresponding matrix norms ‖A‖p = max{ ‖Ax‖p/‖x‖p :

x 6= 0 }; in particular, the column-sum norm ‖A‖1 = max{ ‖Aj‖1 : j ∈ [n] }, the
row-sum norm ‖A‖∞ = max{ ‖a>i ‖1 : i ∈ [m] }, and the

spectral norm ‖A‖2 = σmax(A) =
√
λmax(A>A),

where σmax(A) (λmax(A>A)) is the largest singular value (eigenvalue) of A (A>A).
Some useful norm inequalities are (let x, y ∈ Rn, A ∈ Rm×n): |x>y| ≤ ‖x‖2 ‖y‖2

(Cauchy-Schwarz inequality), ‖x‖2 ≤ ‖x‖1 ≤
√
n‖x‖2, ‖x‖∞ ≤ ‖x‖2 ≤

√
n‖x‖∞,

‖x‖∞ ≤ ‖x‖1 ≤ n ‖x‖∞, ‖Ax‖2 ≤ ‖A‖2‖x‖2, ‖A−1‖2 = 1/‖A‖2, and ‖A‖2 ≤√
‖A‖1‖A‖∞.

Duals of `1-Minimization Problems

The Basis Pursuit problem

min ‖x‖1 s.t. Ax = b (P1)

and (to a lesser extent) its denoising counterpart

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ (Pδ1)

play a prominent role in this thesis. The corresponding dual problems are well-
known; for the sake of completeness, we derive them explicitly in the following.

Lemma 1.5. Let A ∈ Rm×n and b ∈ Rm. The dual problem of (P1) reads

max −b>y s.t. ‖A>y‖∞ ≤ 1, (D1)

and that of (Pδ1) is

max −b>y − δ‖y‖2 s.t. ‖A>y‖∞ ≤ 1. (Dδ1)

Proof. Considering (Pδ1), note that it can be equivalently written as

min ‖x‖1 + ι{ v : ‖v−b‖2≤δ }(Ax).

It is well-known that the conjugate function of an `p-norm is the indicator function

16 Chapter 1. Introduction

of the unit ball w.r.t. the dual norm (see, e.g., [38, Example 3.26]). Thus, for
f(x) = ‖x‖1, we have

f∗(y) = sup{ y>x− ‖x‖1 : x ∈ Rn } = ι{ z : ‖z‖∗1≤1 }(y) =

{
0, ‖z‖∞ ≤ 1,

∞, otherwise.

Similarly, for g(x) = ιδ(x) := ι{ v : ‖v−b‖2≤δ }(x), we obtain

g∗(y) = max
x
{ y>x : ‖x− b‖2 ≤ δ } = max

u
{ y>(u+ b) : ‖u‖2 ≤ δ }

= b>y + max
u
{ y>u : ‖u‖2 ≤ δ } = b>y + max

w
{ y>(δ w) : 1

δ ‖δ w‖2 ≤ 1 }

= b>y + δ max
w
{ y>w : ‖w‖2 ≤ 1 } = b>y + δ ‖y‖2,

where the last equality follows because the support function of a unit norm ball is
the dual norm, see, e.g., [221, Example 2.96]; recall that ‖·‖∗2 = ‖·‖2.
Thus, by Lemma 1.3, the dual of (Pδ1) is given by

max −f∗(−A>y)− g∗(y) ⇔ max −b>y − δ‖y‖2 s.t. ‖−A>y‖∞ ≤ 1,

which is obviously equivalent to (Dδ1).
Finally, it remains to note that for δ = 0, (P1) and (Pδ1) of course coincide;

in particular, we then have g∗(y) = max{ y>x : x = b } = b>y, and completely
analogously to the above derivation, Lemma 1.3 gives (D1) as the dual of (P1).

Remark 1.6. Due to the symmetry of the constraints in (D1) and (Dδ1), we could
also state them with objective functions b>y and b>y − δ‖y‖2, respectively. For
consistency, we will always use the forms given in the above lemma.

The Conjugate Gradient Method

The method of conjugate gradients [133], CG for short, is a very popular iterative
algorithm for computing the solution of the linear equation system Sv = s with
S ∈ Rn×n symmetric (i.e., S = S>) positive definite and s ∈ Rn. In fact, CG can
be used to minimize any continuous differentiable function; in the particular case
of a quadratic form 1

2v
>Sv − s>x + c, the minimizer actually solves Sv = s if S is

symmetric positive definite, see, e.g., [227]. The CG iterations can be written as:

Choose v0 ∈ Rn, Kmax ∈ N and initialize d0 := r0 := s− Sv0

For k = 0, 1, 2, . . . ,Kmax

Set vk+1 := vk +
‖rk‖22
d>k Sdk

dk, rk+1 := rk − ‖rk‖22
d>k Sdk

Sdk, dk+1 := rk+1 +
‖rk+1‖22
‖rk‖22

dk.

1.3. Notation and Preliminaries 17

The name “conjugate gradient method” derives from the fact that the search direc-
tions dk are constructed by conjugation of the residuals s−Svk (which incidentally
are the respective gradients of the aforementioned quadratic form at vk), so it holds
that d>j Sdk = 0 for all j, k (also called S-orthogonality). Detailed descriptions of
the CG method and useful properties of the iterative process can be found, e.g.,
in [227, 222, 133, 203].
For a matrix A ∈ Rm×n with rank(A) = m < n, a solution of the underdetermined

system Ax = b can be obtained by applying CG to the associated normal equation
AA>v = A>b (note that AA> is symm. pos. def.); similarly, if rank(A) = n < m,
the normal equation A>Av = A>b can be solved by CG. In both cases, solving the
respective normal equation yields the vector x̂ = A†b, which gives the minimum-`2-
norm solution in the first case (Ax = b is underdetermined) and the least-squares
solution in the second (in which Ax = b is overdetermined), see, e.g., [111, Corol-
laries A.21 and A.22]. It is also important to note (especially regarding normal
equations) that CG can be implemented using only products with A or A>, i.e., the
method does not require explicit knowledge of AA> or A>A, respectively.

Projection

For a closed convex set X ⊆ Rn, the (Euclidean) projection of a point x ∈ Rn onto
the set X is the unique point PX(x) ∈ X that is closest to x (w.r.t. the `2-norm),
i.e.,

PX(x) := arg min{ ‖x− z‖2 : z ∈ X }.

If x ∈ X, then trivially PX(x) = x. The distance of x to X is given by dX(x) :=

‖x− PX(x)‖2. The projection is easily seen to be nonexpansive, i.e.,

‖PX(x)− PX(y)‖2 ≤ ‖x− y‖2 for all x, y ∈ Rn.

The above definition of projection can be applied to other classes of sets; however,
uniqueness (or even existence) is then not always guaranteed.

Asymptotics, Encoding Lengths and Complexity Theory

Asymptotic upper and lower bounds for functions (often of positive integers) are
specified using the Landau symbols O and Ω, respectively. Thus, f(n) ∈ O(g(n))

means that f does not grow significantly faster than g (as n → ∞), while f(n) ∈
Ω(g(n)) means that the growth of f is of the same order as or faster than that
of g (as n → ∞). More precisely, we write f(n) ∈ O(g(n)) if there exist constants
0 < α, β < ∞ such that |f(n)| ≤ α |g(n)| + β for all n, and f(n) ∈ Ω(g(n)) if

18 Chapter 1. Introduction

and only if g(n) ∈ O(f(n)); see, e.g., [161, Definition 1.2]. In particular, if f is a
polynomial of degree k, then f(n) ∈ O(nk).
The encoding length of an integer n (i.e., the length of its binary/bit repre-

sentation) is defined as 〈n〉 := 1 + dlog2(|n|+ 1)e, that of a rational number r is
〈r〉 := 〈s〉+ 〈t〉, where s and t are mutually prime integers (w.l.o.g., t > 0) such that
r = s/t. For vectors and matrices, the encoding length is defined analogously as
the sum of the encoding lengths of all entries and will be denoted in the same way.
Clearly, for any r ∈ Q, 〈r〉 = 〈−r〉. Moreover, note that 〈0〉 = 1, since the bit that
otherwise encodes the sign can be omitted.
The arguably most important computational complexity classes are P and NP.

Although the technical definitions are based on so-called formal languages, the fol-
lowing widespread viewpoint is sufficient for our purposes (see [115] for a thor-
ough treatment): Somewhat loosely speaking, the complexity class P contains “easy”
(yes/no-decision) problems, i.e., those that can be solved “efficiently”—namely, in
time polynomially bounded by the encoding length of the input. The class NP
contains decision problems for which a positive answer can be verified in input-
polynomial time; the abbreviation means nondeterministic polynomial-time, indi-
cating that one could “guess” a correct solution and then efficiently verify that it
yields a “yes” answer. Clearly, P⊆NP. However, it is widely believed that P6=NP, i.e.,
not for every problem in NP can the answer be deterministically computed (not only
verified) in input-polynomial time. This assumption implies that there are indeed
“hard” problems that cannot be solved efficiently in general. A problem is called
NP-hard if every problem in NP can be polynomially reduced (i.e., transformed using
input-polynomial time and space) to it; if a problem is both NP-hard and contained
in NP, it is called NP-complete. Recall that NP-hardness of a problem implies that,
unless P=NP, there is no polynomial-time algorithm for solving this problem in gen-
eral (for NP-complete problems, the word “unless” can be strengthened to “if and
only if”)—if there was, every problem in NP would be polynomial-time solvable.
An optimization problem is called NP-hard if the associated decision problem

is NP-hard. Moreover, strong NP-hardness, or NP-hardness in the strong sense,
implies that, unless P=NP, there cannot exist a fully polynomial-time approxima-
tion scheme (FPTAS), i.e., an algorithm that solves a (say, minimization) problem
within a factor of (1 + ε) of the optimal value in polynomial time with respect to
the input size and 1/ε; an FPTAS often exists for weakly (not strongly) NP-hard
problems. Strong NP-hardness can also be understood as an indication that a prob-
lem’s intractability does not depend on ill-conditioning of the input data (due to
the occurrence of very large numbers). In fact, for strong NP-hard problems, there
also cannot exist a pseudo-polynomial time solution algorithm (unless P=NP), i.e.,
one with runtime polynomial in the input encoding length and the magnitude of

1.3. Notation and Preliminaries 19

the largest numerical value in a given instance. Resolving the “P vs. NP” question
(e.g., by actually proving that P6=NP) is often considered the most important open
problem in computational complexity theory today.
We will also encounter coNP, the complementary class to NP (i.e., decision prob-

lems with polynomially verifiable “no” answers). The notions of (strong) hardness
and completeness apply to coNP in full analogy to their use with respect to NP,
cf. [115] (see also Remark 2.15 on p. 35 below).

Background Reading Material

Naturally, the basics we gathered above only reflect what is most relevant to the
contents of this thesis; while intended to offer at least a small measure of self-
containment, we make no claim of completeness. For comprehensive treatments of all
the matters touched upon, many more fundamental results and detailed expositions,
we refer to standard works on the respective subjects, e.g.,
• [38, 24, 221, 203] for convex and nonlinear optimization theory,
• [224, 62] for linear programming,
• [118, 121, 138] for linear algebra and matrix theory, and
• [115, 128, 161] for computational complexity,

to name a few. Moreover, we will utilize some graph theoretical concepts, cf. [161,
35], and ideas from matroid theory, see, e.g., [205].

CHAPTER 2
Recovery Conditions and Their

Computational Complexity

The immense interest in the field of Compressed Sensing was triggered in large parts
by the discovery that the NP-hard sparse representation problems (P0) and (Pδ0) can,
under certain conditions, be solved by efficient algorithms. Several such sparse re-
covery conditions (SRCs) have been introduced over the past years—the associated
terms spark, mutual coherence, exact recovery condition, restricted isometry prop-
erty and nullspace property are ubiquitous in the CS literature (and will be formally
defined as we progress through this chapter).
Essentially, an SRC captures certain properties of the sensing matrix A that

make it suitable for CS sparse recovery tasks. Thus, SRCs are useful tools to assert
uniqueness of sparse representations, to assess the possibilities for their efficient
recovery (a priori) and to (post-)validate heuristic solutions. Note also that the best
(regarding the number of measurements ensuring recoverability) currently known CS
matrix constructions involve randomness, and desirable properties can be shown to
hold with high probability—but, to gain final certainty, one would still have to check
the corresponding recovery condition explicitly. Therefore, a question of paramount
importance, to which we devote this chapter, is:

For a (fixed) matrix A, can a given SRC be efficiently evaluated?

We will begin our discussion by exhibiting two important cases where this is in-
deed possible: Incoherence and the exact recovery condition, see Sections 2.1 and
2.2, respectively. In the main parts of this chapter (Sections 2.3-2.5), we establish
NP-hardness of evaluating several other well-known (and more powerful) SRCs that
are based on the spark, restricted isometry property and nullspace property. The

21

22 Chapter 2. Recovery Conditions and Their Computational Complexity

computational intractability of such SRCs had been suspected in the CS commu-
nity for a long time, but no rigorous proofs were given prior to our recent work [237]
(coauthored by Marc Pfetsch). The majority of Sections 2.3–2.5 consists of the con-
tents of this paper (up to slight modifications and revisions), with some additional
remarks and an updated overview of known SRCs.

2.1 Incoherence of the Sensing Matrix

For a matrix A ∈ Rm×n, its mutual coherence µ(A) is defined as

µ(A) := max
i,j∈[n],
i 6=j

|A>i Aj |
‖Ai‖2 ‖Aj‖2

. (2.1)

It can be seen as a measure of the conditioning of submatrices formed by collections
of columns (see, e.g., [111]). A matrix with small µ(A) is called incoherent ; this
property is advantageous for the sparse recovery setting, as the following famous
result shows.

Theorem 2.1 ([90, 126]). Suppose that the underdetermined linear system Ax = b

has a solution x∗ with
‖x∗‖0 <

1

2

(
1 +

1

µ(A)

)
. (2.2)

Then x∗ is the unique optimal solution for both (P0) and (P1).

Indeed, this was one of the first theoretical results that reveals the possibility
of solving the NP-hard problem (P0) by computing a solution to a much simpler
problem instead: Every sufficiently sparse vector x̂ can be recovered by solving
the Basis Pursuit instance given by A and b := Ax̂. In turn, if we obtain some
solution x∗ for Ax = b that obeys the sparsity bound (2.2), then we know we have
found the unique optimal solution to (P0). Thus, Theorem 2.1 provides a sufficient
(but not necessary) condition for `0-`1-equivalence. In fact, (2.2) is also sufficient
for k-sparse recovery by several Matching Pursuit variants, see, e.g., [239].
Clearly, computing µ(A) takes O(n2m) floating point operations, which is widely

considered tractable even for large-scale instances. Thus, the SRC (2.2) can be
efficiently evaluated.
However, the sparsity bounds it provides are quite conservative, or pessimistic,

and often cannot be expected to be achievable in practice [100]. Nonetheless, inco-
herence is a useful concept, e.g., for the design of sensing matrices. For instance,

2.2. The Exact Recovery Condition (ERC) 23

if and only if A is an orthonormal basis for Rm, then µ(A) = 0 and every vector
can be recovered (this is of course trivial, since here Ax = b always has the single
solution A−1b). The coherence between any pair of orthonormal bases is between
1/
√
n and 1; the lower bound is attained for various choices such as the (complex)

identity-Fourier pair or the concatenation of the identity matrix with a Hadamard
matrix; see, e.g., [92]. (In such two-bases situations, (2.2) can be improved to
‖x∗‖0 < (

√
2 − 1/2)/µ(A) [101], which actually characterizes `0-`1-equivalence in

this case [106].) For general m× n matrices A with rank(A) = m ≤ n, it is known
that the mutual coherence satisfies the Welch bound µ(A) ≥

√
(n−m)/(m(n− 1)),

cf. [252]. Matrices that achieve this lower bound actually exist (although not for
every pair m, n); they are called (optimal) Grassmannian frames or equiangular
tight frames; see, e.g., [232, 234]. Consequently, this choice of sensing matrix yields
the best possible properties w.r.t. the incoherence-based SRC (2.2): It allows uni-
form recovery of k-sparse solutions whenever k < (1/2)(1 +

√
m(n− 1)/(n−m)).

Favorable incoherence properties are also established to hold with high probability
in the asymptotic regime (i.e., with m and n very large) for certain matrices involv-
ing random entries; for instance, for a random orthogonal m × n matrix A, µ(A)

typically behaves like
√

log(mn)/m [92, 100], and if the distribution of the random
entries has zero mean and finite variance, µ(A) =

√
2 log(n)/m [165, p. 26]. (Note

that these mutual coherence values are relatively small if the undersampling ratio
m/n is not too small.)

2.2 The Exact Recovery Condition (ERC)

The exact recovery condition (ERC) from [239] is fulfilled if, for a solution x∗ of the
(underdetermined) system Ax = b with support S := supp(x∗), it holds that

erc(A,S) := max
j /∈S
‖(A>SAS)−1A>SAj‖1 = max

j /∈S
‖A>j (A>S)†‖1 < 1. (2.3)

In this case, x∗ is the unique solution of (P1) (and, if sufficiently sparse, of (P0))
and it can also be recovered using Matching Pursuit techniques, see [239]. Note
that the ERC provides a recovery guarantee for individual solutions (in the sense
that they are unique `1-minimizers), but not uniformly for all (k-)sparse solutions.
Thus, the ERC shows that recovery can still be guaranteed for certain supports
with cardinalities going beyond bounds like (2.2). The sparsity of x∗ appears only
implicitly in the ERC, as the size of the support set S. The cost for evaluating
erc(A,S) depends mainly on computing the pseudo-inverse (A>S)† and matrix-vector

24 Chapter 2. Recovery Conditions and Their Computational Complexity

multiplications; thus, it can roughly be estimated as O(m3 + nm2) ⊆ O(nm2).
Of course, since supp(x∗) will hardly be known a priori, evaluating (2.3) directly

is essentially restricted to validation of candidate solutions at hand. However, one
easily obtains a sufficient condition for uniform k-sparse recovery by requiring (2.3)
to hold for all index sets S ⊂ [n] with |S| ≤ k (in this case, the unique `1-minimizer
also uniquely solves (P0), cf. [239]). Verifying this condition directly is potentially
very expensive. Nevertheless, it can be shown to hold if the condition (2.2) given
by the mutual coherence is satisfied (see [100, Theorem 4.7]) or, more generally, if
µk−1(A) + µk(A) < 1, where

µk(A) := max
S⊂[n],
|S|=k

max
j∈[n]\S

∑
i∈S

|A>i Aj |
‖Ai‖2 ‖Aj‖2

≤ k µ(A)

is the cumulative mutual coherence, see [239].
Moreover, it is noteworthy that the (uniform) ERC, while only providing a suffi-

cient condition for `0-`1-equivalence, is actually “worst-case necessary” for recovery
by Orthogonal Matching Pursuit (OMP), i.e., OMP can fail if the optimal support
violates (2.3) [239, Theorem 3.10]. Note also that the original ERC definition in [239]
pertains to A with unit `2-norm columns; however, this assumption is in fact not
needed for the results about BP (see also Remark 3.3 on p. 60), and it also appears to
be nonessential to many of those concerning OMP given in [239]. The normalization
assumption is common throughout the CS literature and clearly not very restrictive
(at least computationally); a possible justification is that, generally, different col-
umn norms may adversarially affect the capability of (P1) to mimic (P0)—a column
with very small norm is less likely to “receive” a nonzero coefficient in an optimal
`1-minimizer (because this coefficient would need to be relatively large), while this
situation is of no concern for the `0-objective. Nevertheless, slightly generalized
versions of the ERC were recently introduced in [233] which explicitly account for
the case when the columns of A are not normalized to unit Euclidean length and
more directly accommodate whether recovery is attempted via BP or OMP.

2.3 The Spark of a Matrix

The spark of a matrix is defined as the smallest number of linearly dependent
columns. This term was first defined in [90], where strong results concerning unique-
ness of sparse representations were proven. The fundamental such result is the
following.

2.3. The Spark of a Matrix 25

Theorem 2.2 ([90, 126]; see also [165, Theorem 1.1]). Every k-sparse vector x∗

is the respective unique sparsest solution of Ax = b with b := Ax∗ if and only if
k < spark(A)/2.

Note that, for instance, the uniqueness w.r.t. (P0) in the incoherence-based SRC
of Theorem 2.1 is a direct consequence of this result, because the mutual coherence
provides a lower bound on the spark: spark(A) ≥ 1+1/µ(A) (see [100, Lemma 2.1]).

Remark 2.3. It is important to note that the above theorem provides a char-
acterization of uniform recoverability of k-sparse solutions. In general, ‖x∗‖0 <

spark(A)/2 is only a sufficient condition for x∗ to be the unique sparsest solution
of Ax = b := Ax∗ (see, e.g., [100, Theorem 2.4]), but not necessary: Consider, for
example,

A =

(
1 0 0

0 1 1

)
, b =

(
1

0

)
;

then, x∗ = (1, 0, 0)> is the unique (and sparsest) solution, but ‖x∗‖0 = 1 =

spark(A)/2.

The value spark(A) is also known as the girth of the vector matroid associated
with the columns of A, cf. [205]. A matroid can be described in terms of its circuits;
in our context, these are the inclusion-wise minimal collections of linearly dependent
columns of A. More precisely, a circuit is a set C ⊆ [n] of column indices such that
AC x = 0 has a nonzero solution, but every proper subset of C does not have this
property, i.e., rank(AC) = |C| − 1 = rank(AC\{j}) for every j ∈ C. (For notational
simplicity, we will sometimes identify circuits C with the associated solutions x ∈ Rn
of Ax = 0 having support C.) The smallest size (cardinality) of a circuit can be
expressed as

spark(A) := min{ ‖x‖0 : Ax = 0, x 6= 0 }. (2.4)

Example 2.4. Consider the matrix

A =

 1 1 0 0

1 1 0 1

0 0 1 1

 .

Clearly, the first two columns yield a minimum-size circuit (in fact, the only one), i.e.,
spark(A) = 2. In particular, note that generally, spark(A) ≤ k does not guarantee
that there also exists a vector with k nonzeros in the nullspace of A; e.g., take k = 3

for the above A. On the other hand, it is immediately clear that a nullspace vector
with support size k does not yield spark(A) = k, but only spark(A) ≤ k. This

26 Chapter 2. Recovery Conditions and Their Computational Complexity

distinction between circuits and nullspace vectors in general will be crucial in the
proofs below.

2.3.1 Complexity of Spark Computation

Ever since its introduction, the value spark(A) has been claimed to be NP-hard to
calculate, but, to the best of our knowledge, without a proof or reference for this
fact. It seems to have escaped researchers’ notice that [148] contains a proof that
deciding whether the spark equals the number of rows is NP-hard, by reduction
from the Subset Sum Problem (cf. [MP9] in [115]); for details, see Remark 2.11
below. Moreover, [59] provides a different proof for this special case, by a reduction
from the (homogeneous) Maximum Feasible Subsystem problem [5]; yet another
proof is contained in [103]. Even earlier, the authors of [67] claimed to have a
proof2, but gave credit to the dissertation [185] for establishing NP-hardness of spark
computations. However, a closer inspection reveals that the result in [185] is in fact
not about the spark but the girth of transversal matroids (of bipartite graphs). Only
recently, a variant of the latter proof has resurfaced in [3], where it is used to derive
(nondeterministic) complexity results for constructing so-called full spark frames,
i.e., matrices exhibiting the highest-possible spark. Every transversal matroid can
be represented by a matrix over any infinite field or finite field with sufficiently
large cardinality [208], but there is no known deterministic way to construct such a
matrix.
We will adapt the proof idea from [185], a reduction from the k-Clique Problem

(cf. [GT19] in [115], or [147]), to vector matroids and thus establish that spark
computation is NP-hard (without the restriction that the spark equals the row size).
The main result of this section is the following.

Theorem 2.5. Given a matrix A ∈ Qm×n and a positive integer k, the problem to
decide whether (the vector matroid associated with the columns of) A has a circuit
of size at most k is NP-complete.

For our proof, we need several auxiliary results (cf. [35, 161] for graph theory
basics):

Lemma 2.6. The vertex-edge incidence matrix of an undirected simple graph with
N vertices, B bipartite components, and Q isolated vertices has rank N −B −Q.

This result seems to be rediscovered every once in a while. The earliest proof we
2They probably refer to [66, Theorem 6.1], but its proof is incomplete; see Remark 2.10.

2.3. The Spark of a Matrix 27

are aware of is due to van Nuffelen [248] and works through various case distinctions
considering linear dependencies of the matrix rows and consequences of the existence
of isolated or bipartite components.

Lemma 2.7. Let G = (V,E) be a simple undirected graph with vertex set V and
edge set E. Let A be its vertex-edge incidence matrix, and let k > 4 be some
integer. Suppose that G only has connected components with at least four vertices
each, |E| =

(
k
2

)
, and rank(A) = k. Then the graph G has exactly |V | = k vertices.

Proof. Let the preconditions of the lemma hold. Then, since G has no isolated
vertices, Lemma 2.6 tells us that the number of vertices is

N = rank(A) +B = k +B,

where B is the number of bipartite components in G. Assume that B > 0, since
otherwise the lemma is trivially true.
We claim that the number of edges in G can be at most

|E| ≤
(
N

2

)
− 4(N − 4)

2
B − 2B. (2.5)

To see this, recall that G can have at most
(
N
2

)
edges. Each connected component

has at least four vertices. Since there are no edges between such a component and
vertices outside, the total number of possible edges is reduced by at least 4(N−4)/2

per component (the factor 1/2 ensures that we do not count any edges twice). Since
G has at least B connected components, the possible number of edges is hence
decreased at least by the second term in the right hand side of (2.5). Moreover, since
each bipartite component has at least four vertices, at least two of the potential edges
cannot be present inside each such component, which yields the last term in (2.5).
Note that the bound (2.5) is sharp if G consists only of bipartite components with
four vertices each.
Expanding (2.5) using N = k +B, we obtain

|E| ≤
(
N

2

)
− 4(N − 4)

2
B − 2B =

(k +B)(k +B − 1)

2
− 4(k +B − 4)

2
B − 2B

=
1

2
k2 − 1

2
k − k B − 3

2
B2 +

11

2
B =

(
k

2

)
−
(
k B +

3

2
B2 − 11

2
B

)
,

and observe that

k B +
3

2
B2 − 11

2
B ≥ 5B +

3

2
B2 − 11

2
B =

3

2
B2 − 1

2
B > 0

28 Chapter 2. Recovery Conditions and Their Computational Complexity

if B > 0 (recall that B is integer). Thus, there are strictly less than
(
k
2

)
edges,

contradicting the premise |E| =
(
k
2

)
. Hence, B = 0.

Lemma 2.8. Let H = (hij) ∈ Zm×n be a full-rank integer matrix with m ≤ n and
let η := max{ |hij | : i ∈ [m], j ∈ [n] }. Let q ∈ {m, . . . , n} and define the q × n

integer matrix

H(x) :=

H

1 x (x)2 . . . (x)n−1

1 x+ 1 (x+ 1)2 . . . (x+ 1)n−1

...
...

... . . .
...

1 x+ q −m− 1 (x+ q −m− 1)2 . . . (x+ q −m− 1)n−1

 .

Suppose |x| ≥ ηmqqn + 1. Then, if rank(HS) = m for any column subset S with
|S| = q, the submatrix H(x)S ∈ Zq×q has full rank q.

Proof. This result is a combination of Lemma 1 and (ideas from the proof of) Propo-
sition 4 from [59]. For clarity, we give the details here. Consider some S ⊆ [n] with
|S| = q; w.l.o.g., assume q ≥ m+1 (otherwise, the statement is trivial). Assume that
rank(HS) = m and note that the last q−m rows ofH(x)S form a submatrix of a gen-
eralized Vandermonde matrix with distinct nodes (see, e.g., [84]), which is easily seen
to have full rank as well; see also [59]. Consider the polynomial p(x) := det(H(x)S).
From [59, Lemma 1], we know that there exists some x for which the row space of
HS and the subspace spanned by the last q−m rows of H(x)S are transversal, i.e.,
they only intersect trivially. In particular, this shows that p cannot be identical to
the zero polynomial (both transversal parts have full rank). Let d be the degree of
p(x) (which depends on the choice of S); thus, p(x) = β0 + β1x + · · · + βdx

d with
βd 6= 0. It is easy to see that βi ∈ Z for all i ∈ {0, 1, . . . , d}.
Moreover, we now show that |βi| ≤ ηmqqn for all i: Write S = {s1, . . . , sq}, let Σq

denote the set of all permutations of 1, . . . , q and let sgn(σ) ∈ {±1} be the signum
of a permutation σ ∈ Σq (i.e., the determinant of the permutation matrix associated
with σ). Expanding the determinant detH(x)S using Leibniz’s formula, we obtain

p(x) = det(H(x)S) =
∑
σ∈Σq

(
sgn(σ)

q∏
i=1

h(x)i,sσ(i)

)

=
∑
σ∈Σq

sgn(σ)

m∏
i=1

hi,sσ(i)

q−m−1∏
j=0

(x+ j)sσ(m+1+j)−1

 .

(Recall that every summand of the first sum contains exactly one entry from each

2.3. The Spark of a Matrix 29

row and column of H(x)S , i.e., in particular, m entries from HS and q −m entries
from the Vandermonde-like last q −m rows of H(x)S .)
Note that by definition of η and since sgn(σ) ∈ {±1}, sgn(σ)

∏m
i=1 hi,sσ(i) ≤ ηm for

all σ ∈ Σq. Therefore, the coefficients βi of p(x) cannot have larger absolute values
than those of the polynomial ηm

∑
σ∈Σq

(∏q−m−1
j=0 (x + j)sσ(m+1+j)−1

)
. There are

q! ≤ qq permutations of the elements of S, i.e., summands in the latter expression.
In particular, the coefficient contribution of each such summand is nonnegative
(since j ≥ 0 in each factor). Here, the largest possible numbers occur if S contains
the indices of the last q−m columns of H(x), i.e., {n−q+m+1, . . . , n} ⊂ S. Hence,
all values |βi| are no larger than the largest possible coefficient in the polynomial
ηmqq

∏q−m−1
j=0 (x+ j)n−q+m+j .

By the binomial formula, we have (for every j ∈ {0, 1, . . . , q −m− 1})

(x+ j)n−q+m+j =

n−q+m+j∑
`=0

(
n− q +m+ j

`

)
xn−q+m+j−` j`.

Clearly, the largest coefficients here are attained for j = q −m− 1; thus, every |βi|
is upper bounded by the largest coefficient of the polynomial

ηmqq
q−m−1∏
j=0

(x+ q −m− 1)n−q+m+q−m−1 = ηmqq
q−m∏
j=1

(x+ q −m− 1)n−1

= ηmqq
(

(x+ q −m− 1)n−1
)q−m

= ηmqq(x+ q −m− 1)(n−1)(q−m)

= ηmqq
(n−1)(q−m)∑

`=0

(
(n− 1)(q −m)

`

)
x(n−1)(q−m)−`(q −m− 1)`.

This largest coefficient can be bounded as

max
0≤`≤(n−1)(q−m)

{(
(n− 1)(q −m)

`

)
(q −m− 1)`

}

≤
(n−1)(q−m)∑

`=0

(
(n− 1)(q −m)

`

)
(q −m− 1)`

= (q −m− 1 + 1)(n−1)(q−m) = (q −m)(q−m)(n−1) < qq(n−1) = qqn−q.

Consequently, to summarize, we have established the claimed bound

|βi| ≤ ηm qq qqn−q = ηm qq+qn−q = ηm qqn.

To complete the proof, we apply Cauchy’s bound [136] to the monic polynomial

30 Chapter 2. Recovery Conditions and Their Computational Complexity

obtained from dividing p(x) by βd and obtain that for all r with p(r) = 0, it holds
that

|r| < 1 + max
0≤i≤d−1

{
|βi/βd|

}
≤ 1 + max

0≤i≤d−1

{
|βi|

}
≤ 1 + ηmqqn.

Thus, any x with |x| ≥ ηmqqn+1 is not a root of p(x); equivalently, rank(H(x)S) = q

for such x.

Proof of Theorem 2.5. The problem is clearly in NP: Given a subset C of column
indices of A, it can be verified in polynomial time that |C| ≤ k and that rank(AC) =

|C| − 1 = rank(AC\{j}) for every j ∈ C (by Gaussian elimination, see, e.g., [128]).
To show hardness, we reduce the NP-complete k-Clique Problem: Given a simple

undirected graph G, decide whether G has a clique (i.e., a vertex-induced complete
subgraph) of size k. We may assume w.l.o.g. that k > 4.
For the given graph G with n vertices and m edges, construct a matrix A = (aie)

of size (n+
(
k
2

)
−k−1)×m as follows: Index the first n rows of A by the vertices of G

and its columns by the edges of G (we will also identify the vertices and edges with
their indices). Let the first n rows of A contain the vertex-edge incidence matrix
of G (i.e., set aie = 1 if i ∈ e, and 0 otherwise). For the non-vertex rows n + i,
i ∈ {1, . . . ,

(
k
2

)
− k− 1}, set a(n+i)e = (U + i− 1)e−1 with U := k2k2m + 1; note that

this corresponds to the bottom part of A consisting of a Vandermonde matrix (each
row consists of increasing powers of the distinct numbers U, . . . , U +

(
k
2

)
− k − 2).

Clearly, this matrix A can be constructed in polynomial time, and its encoding
length is polynomially related to that of the input (in particular, that of its largest
entry is O(k2m2 log2(k))).
We first show that G has a k-clique if and only if A has a circuit of size

(
k
2

)
.

Suppose that G has a k-clique, k > 4, say on the vertices in the set R (so that
|R| = k), and with its

(
k
2

)
edges in the set C. Since AC has all-zero rows for each

vertex outside of R,

|R|+ (number of non-vertex rows) =

(
k

2

)
− 1 = |C| − 1 ≥ rank(AC).

Clearly, a clique is never bipartite (it always contains odd cycles, for k ≥ 3). Hence,
by Lemma 2.6, the rows of AC indexed by R are linearly independent. Now observe
that removing any edge from a k-clique does not affect the rank of the associated
incidence matrix, since the subgraph remains connected and non-bipartite with fewer
vertices than edges (for k ≥ 4). Thus, by Lemma 2.6, the rank of the nonzero vertex
row part of AC remains k if any column from C is removed. Therefore, since aie ≤ 1

for all i ≤ n and all e ≤ m, Lemma 2.8 applies to AC\{e} for every e ∈ C (with

2.3. The Spark of a Matrix 31

x = U , H(x) = A, S = C \ {e}, and q =
(
k
2

)
− 1, respectively) and yields that for

all e ∈ C,

rank(AC\{e}) = k +

(
k

2

)
− k − 1 = |C| − 1.

Consequently, it must hold that rank(AC) = |C| − 1. Thus, C is a circuit.
Conversely, suppose that A has a circuit C of size |C| =

(
k
2

)
with k > 4. Then, by

definition of a circuit, rank(AC) = |C| − 1, so AC has at least |C| − 1 nonzero rows.
Since these include the |C|−k−1 non-vertex rows, the set R of nonzero vertex rows
of AC has size |R| ≥

(
|C| − 1

)
−
(
|C| − k − 1

)
= k. Let ARC and ANC denote the

vertex and non-vertex row submatrices of AC , respectively. Since

|C| − 1 = rank(AC) ≤ rank(ANC) + rank(ARC) = |C| − k − 1 + rank(ARC),

clearly rank(ARC) ≥ k. Suppose that rank(ARC) > k; then there must exist a subset
R′ ⊆ R with |R′| = k + 1 and rank(AR′C) = k + 1. But by Lemma 2.8, the square
matrix (A>R′C , A

>
NC)> would then have full rank |C|, which implies rank(AC) =

|C| > |C| − 1, contradicting the fact that C is a circuit. Thus, the upper part ARC
of AC must in fact have rank exactly k.
Observe that the subgraph (R,C) of G with vertex set R and edge set C cannot

contain components with less than 4 vertices: Such a subgraph (R′, C ′) could have at
most as many edges as vertices, so that the associated incidence matrix A′C′ has full
column rank. Removing a column corresponding to an edge e ∈ C ′ would reduce
the rank, i.e., rank(A′C′\{e}) < rank(A′C′). Moreover, note that ARC has block
diagonal form where the blocks are the incidence matrices of the separate graph
components within (R,C), so that the rank is the sum of the ranks of the blocks
(one of which is AR′C′). In particular, the non-vertex row part of AC maintains
full (row) rank when any column is removed from C, so that deleting e ∈ C ′ would
yield rank(AC\{e}) = rank(AC)−1, contradicting the fact that C is a circuit. Thus,
Lemma 2.7 applies to the graph (R,C) and yields that |R| = k. This implies that
the vertices in R form a k-clique, because R can induce at most

(
k
2

)
edges and the

(
k
2

)
edges in C are among them.
We now show that each circuit of A has size at least

(
k
2

)
. This proves the claim,

since by the arguments above, it shows that there exists a circuit of size at most (in
fact, exactly)

(
k
2

)
if and only if G has a k-clique, i.e., for the given construction a

solution to the spark problem yields a solution to the clique problem as well.
Suppose that A has a circuit C with c := |C| <

(
k
2

)
, and let d :=

(
k
2

)
− c > 0.

Clearly, not all vertex rows restricted to any column subset can be zero, and any
submatrix of the non-vertex part of A with fewer than

(
k
2

)
− k columns is of full

(column) rank. Therefore, c >
(
k
2

)
−k necessarily. Since C is a circuit, AC has c− 1

32 Chapter 2. Recovery Conditions and Their Computational Complexity

nonzero rows (similar to the arguments above, it can be seen that the lower bound
c−1 holds with equality). Because the

(
k
2

)
−k−1 non-vertex rows are among these,

and by Lemmas 2.7 and 2.8, AC has (c − 1) −
((
k
2

)
− k − 1

)
= k − d > 0 nonzero

vertex rows. Denote the index set of such rows by R, and let r be the number
of edges in the subgraph of G induced by the vertices in R. Since |R| = k − d

vertices can induce at most
(
k−d

2

)
edges, r ≤

(
k−d

2

)
. But surely all the edges in C

are among those induced by R, so that r ≥ c =
(
k
2

)
− d. Putting these inequalities

together yields
(
k
2

)
−d ≤ r ≤

(
k−d

2

)
. However, since we assumed k > 4, it holds that(

k
2

)
− d >

(
k−d

2

)
, yielding a contradiction. Consequently, every circuit C of A must

satisfy |C| ≥
(
k
2

)
.

Clearly, there exists a circuit of size at most k if and only if the spark is at most k
(recall (2.4)). Hence, Theorem 2.5 immediately yields the following.

Corollary 2.9. Computing spark(A) is NP-hard.

Remark 2.10. The idea of reducing from the clique problem is due to Larry Stock-
meyer and appears in [185, Theorem 3.3.6] (see also [3]). However, [185] uses generic
matrices that, in fact, represent transversal matroids (of bipartite graphs) and there-
fore have certain properties needed in the proof. The entries of these generic matrices
are not specified, and to date there is no known deterministic way to do so such
that the matrix represents a transversal matroid. We replaced the corresponding
machinery by our explicit matrix construction and the arguments using Lemmas 2.6,
2.7 and 2.8 to become independent of transversal matroid representations and work
directly on vector matroids. Note that the proof of Theorem 2.5 also shows NP-
completeness of the problem to decide whether A has a circuit C of size equal to k;
cf. Example 2.4.
It must also be noted that the NP-hardness of the spark decision problem also

appears in [66, Theorem 6.1] (cf. [67]). However, while the proof in [66] builds on
the same ideas and employs a very similar matrix construction as ours, it is in fact
incomplete, for similar reasons as those preventing the proof of [185, Theorem 3.3.6]
to work directly for vector matroids: The argumentation in [66] implicitly assumes
certain rank properties, or a kind of genericity, for submatrices which are nontrivial
to establish deterministically and certainly do not hold for arbitrary matrices such
as those apparently used in their construction. This could be fixed essentially along
the same lines by which we extended the proof of [185] from transversal to vector
matroids, using Vandermonde-like matrix parts and Lemmas 2.6–2.8.

Remark 2.11. The results above are related to, but different from, the following.
1. Theorem 1 in [148] shows that for an m × n matrix A, it is NP-complete

to decide whether A has an m ×m submatrix with zero determinant, which

2.3. The Spark of a Matrix 33

implies NP-completeness of deciding whether spark(A) ≤ k for the special case
k = m. This restriction of k to the row number m of A could in principle be
removed by appending all-zero rows, but one would then no longer be in the
interesting case where the matrix has full (row) rank. Our proof admits spark
values other than the row number for full-rank matrices; however, the row and
column numbers in the reduction depend on the instance.

2. In contrast to the results above, for graphic matroids, the girth can be com-
puted in polynomial time [141, 185, 205]. A graphic matroid (on an undirected
simple graph G) can be represented as a vector matroid via an oriented inci-
dence matrix, i.e., the incidence matrix of a directed graph G′ obtained from
G by assigning an arbitrary orientation to each edge. The spark of such a
matrix equals precisely the length of the shortest cycle in G.

3. The paper [249] proves NP-hardness of computing the girth of a binary ma-
troid, i.e., a vector matroid over F2. This, however, does not imply NP-
hardness over the field of rational or real numbers, and the proof cannot be
extended accordingly. Similarly, in [20] it was shown that, over F2, it is NP-
complete to decide whether there exists a vector with exactly k nonzero en-
tries in the nullspace of a matrix. However, while the proof for this result can
straightforwardly be extended to the rational case, it does not imply hardness
of computing the spark either: Since in [20], there is no lower bound on the
spark (such as we provide in the last paragraph of the proof of Theorem 2.5),
a situation as in Example 2.4 is not explicitly avoided there. (Note also that
it was already remarked in [20] that the problem to decide whether there ex-
ists an (F2-)nullspace vector with at most k nonzeros is not covered by their
proof.)

2.3.2 Related Problems

As mentioned in [90], one can reduce spark computations to (P0) as follows: For
each column of A ∈ Qm×n in turn, add a new row with a 1 in this column and 0

elsewhere. The right hand side b is the (m + 1)-th unit vector. Now solve each
such (P0) problem, and take the solution with smallest support. Note that this
is actually a (Turing-)reduction, showing NP-hardness of (P0) using Theorem 2.5.
Interestingly, we do not know a reduction for the reverse direction.
The following result shows another relation between minimum cardinality circuits

and the task of finding sparsest solutions to underdetermined linear systems:

34 Chapter 2. Recovery Conditions and Their Computational Complexity

Corollary 2.12. Given a matrix B, a specific column b of B, and a positive inte-
ger k, the problem of deciding whether there exists a circuit of B of size k which
contains b is NP-complete in the strong sense. Consequently, it is strongly NP-hard
to determine the minimum cardinality of circuits that contain a specific column b

of B.

Proof. Denote by A the matrix B without the column b. Then it is easy to see
that B has a circuit of size k that contains b if and only if Ax = b has a solution
with k − 1 nonzero entries. Deciding the latter is well-known to be NP-complete in
the strong sense (it amounts to the decision version of (P0)), see [MP5] in [115].

Some algorithmic aspects of the above problem variant are discussed, from the
matroid theoretical viewpoint, in [60].
The matroid perspective also allows for easy NP-hardness proofs for two very

interesting problems known as the Sparse Nullspace Basis problem (SNB) [65, 21,
67, 68, 117, 209, 149] and Matrix Sparsification (MS) [185, 137, 186, 54, 55, 99].
In the former, one asks for a sparsest-possible basis for the nullspace of a given
matrix, and the latter seeks a sparsest equivalent representation of a given matrix,
i.e., one that spans the same row and column spaces but has as few nonzero entries
as possible. The interest in these problems is fairly obvious: Many ubiquitous
operations involving matrices, such as multiplication and linear system solving, can
be carried out significantly faster with sparse matrices rather than general (dense)
ones—thus, the fewer nonzeros in a matrix, the better.
Using basic linear algebra, the two problems SNB and MS can be seen to be poly-

nomially equivalent (we can always express one by the other via simple polynomial
transformations), see, e.g., [66, 123]. For MS, insights from matroid theory show
that the “matroid greedy algorithm” (cf. [205]) is optimal and solves the problem,
see, e.g., [99]. In particular, this greedy property implies that a sparsest nullspace
basis must in fact contain a spark-defining circuit vector. Thus, solving SNB (or the
equivalent MS instance) would also solve the spark problem, and therefore is NP-
hard. Moreover, [123] shows that strong inapproximability results from [5] for (P0)
and related problems carry over to these two matrix problems, and how techniques
from Compressed Sensing can be employed in heuristic approaches to MS or SNB;
see also [202].

Remark 2.13. The original NP-hardness proof for SNB from [67] makes use
of the result from [185], falsely attributing it to vector matroids instead of
just transversal matroids; in [66], SNB hardness hinges on the incomplete proof
for NP-hardness of computing the spark discussed in Remark 2.10. Thus, our
Theorem 2.5 can be seen to resolve this slight inaccuracy, which had appar-

2.3. The Spark of a Matrix 35

ently gone unnoticed amongst SNB/MS researchers, and reinforce the claims
from [66, 67].

Let us now briefly consider full spark frames. An m×n matrix A with full rank m
(m ≤ n) is said to be full spark if spark(A) = m+1, i.e., every submatrix consisting
of at most m columns of A has full rank. In [3], it was shown that testing a matrix
for this property is hard for NP under randomized reductions. In fact, the following
stronger result holds:

Corollary 2.14. Given a rational matrix A, deciding whether A is a full spark
frame is coNP-complete.

Proof. We can assume w.l.o.g. that A ∈ Qm×n with rank m ≤ n. Thus, A is
full spark precisely if spark(A) = m + 1. Clearly, spark(A) = m + 1 holds if
and only if the question whether A has a singular m×m submatrix has a negative
answer. Since the latter decision problem is NP-complete by [148, Theorem 1] (or [59,
Proposition 4] and the results in [5]), deciding whether A is a full spark frame is
NP-hard. Moreover, this problem is contained in coNP, since the “no” answer can be
certified in polynomial time by specifying a singular (square) submatrix and because
singularity can be verified in polynomial time, e.g., by Gaussian elimination.

Note that above, we cannot employ Theorem 2.5, because this would require
considering the matrix construction used in its proof with k = n − 1, and the
clique problem can be solved in polynomial time O(n`+2) for any k = n − ` with
constant ` (by enumeratively testing if for any of the

(
n
n−`
)
∈ O(n`) vertex subsets

all
(
n−`

2

)
∈ O(n2) possible edges in the respective induced subgraph exist).

Remark 2.15. Above, and in several complexity results to follow, we show that the
decision problem under consideration has a negative answer if and only if a known
NP-complete problem has a positive answer. Since, by definition, the complemen-
tary problem of an NP-complete problem is coNP-complete, the respective hardness
results follow; cf. [115]. Both NP- and coNP-completeness imply that no polynomial
time algorithm exists unless P=NP (or equivalently P=coNP). Since a problem is
NP-hard if and only if it is coNP-hard (every problem in coNP can be Turing-reduced
to it; cf. [161, Chapter 15]), we use the term NP-hard throughout.

Finally, note that the spark of A is related to the Kruskal rank (= spark(A)− 1)
in the context of tensor decompositions [163, 160], and to k-stability (holds if and
only if spark(A) = n− k+ 1) from matrix completion [269] (which in turn is linked
to so-called Maximum Distance Separable codes; cf., e.g., [247, Chapter 5] or other
introductory books on coding theory). This was already noted in [171, Lemma 5.2],

36 Chapter 2. Recovery Conditions and Their Computational Complexity

where it was later remarked that these concepts are expected (but unknown) to be
computationally intractable over R (or C), given the hardness results from [249] over
the binary field. Indeed, by the described relations, our Theorem 2.5 immediately
implies that the Kruskal rank is NP-hard to compute and k-stability is NP-hard to
verify.
In the next sections, we shall see how we can deduce NP-hardness of evaluating

several important sparse recovery conditions from the results about the spark.

2.4 The Restricted Isometry Property (RIP)

Many SRCs employ the famous restricted isometry property (RIP) (see [50] and
also [14, 31]), which is satisfied with order k ∈ N and a constant δk by a given
matrix A if

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22 for all x with 1 ≤ ‖x‖0 ≤ k. (2.6)

Note that (2.6) holds with δk = 0 if and only if A is orthogonal (i.e., A>A = I),
and that δk < 0 is impossible.
One is usually interested in the smallest constant δk for which (2.6) holds, i.e.,

the restricted isometry constant (RIC)

δk := min
δ≥0

δ s.t. (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 (2.7)

for all x with 1 ≤ ‖x‖0 ≤ k.

For instance, a popular early result states that if δ2k < 1 then (P0) has a unique
solution, and moreover, if δ2k <

√
2 − 1, all x with at most k nonzero entries can

be recovered (from A and b := Ax) via Basis Pursuit, see [48]. A series of papers
has been devoted to developing SRCs of this flavor. The steady improvements
of RIC bounds very recently culminated in the SRCs δk < 1/3 [44] and δdcke <√

(c− 1)/c for any constant c ≥ 4/3 [45], which are sufficient for k-sparse recovery
by `1-minimization; see also [43].
In fact, [44, 45] also establish that these SRCs are “worst-case necessary”: There

exist instances for which k-sparse recovery via (P1) fails if the respective RIC bound
does not hold; therefore, larger bounds cannot give sufficient SRCs in general. (For
c = 2, [45] recovers a special case of an earlier result from [81], which showed that
`p-recovery, for 0 < p ≤ 1, can fail if δ2k ≥ 1/

√
2.) In particular, the (gener-

ally) unbridgeable gap between 1/
√

2 and 1 shows that order-2k RIP-based SRCs

2.4. The Restricted Isometry Property (RIP) 37

cannot yield recovery for all unique k-sparse solutions (recall that δ2k < 1 en-
sures uniqueness). Nevertheless, the known RIP-SRCs can provide much better
(sufficient) recoverability guarantees than the mutual coherence can offer. (Note,
for instance, that for A with unit `2-norm columns, δ2 = µ(A) and, more generally,
δk ≤ (k−1)µ(A), see, e.g., [108, Proposition 2.10]. Thus, the incoherence-SRC (2.2)
implies an RIP-based SRC; however, this bound is often far from sharp.) Therefore,
the interest in the RIP is well-justified.
Moreover, several probabilistic results show that certain random matrices are

highly likely to satisfy the RIP with desirable values of δk, see, for instance, [12,
31]. There also has been work on deterministic matrix constructions aiming at
relatively good RIPs, see, e.g., [85, 142, 36]. The RIP also provides sparse recovery
guarantees for other heuristics such as Matching Pursuit variants [80, 239], as well
as for the Basis Pursuit Denoising problem (e.g., [48, 44]) and even low-rank matrix
completion, see [217, 45] among many others. For instance, if δk+1 < 1/(1 +

√
k)

then OMP recovers k-sparse signals (in k iterations), but can fail to do so already
when δk+1 = 1/

√
k [189].

2.4.1 Complexity of RIP-based Recovery Conditions

In the literature, it is often mentioned that evaluating the RIP—i.e., computing
the constant δk for some A and k—is presumably a computationally hard problem.
(Most papers seem to refer to NP-hardness, but this is often not explicitly stated.)
The suspicions about computational intractability of the RIP are based on the ob-
servation that a brute-force method would have to inspect all submatrices induced
by column subsets of sizes up to k. Although, by itself, this does not generally rule
out the possible existence of an efficient algorithm, it motivated the development of
several (polynomial-time) algorithms to approximate δk by, e.g., semidefinite relax-
ation [78, 167]. (Note also the “lazy algorithm” from [158, 159], which sometimes
allows for doing better than exhaustive search to confirm that the RIP holds for a
given matrix, order and constant, by exploiting the monotonicity of the RIC: If A
(with `2-normalized columns) obeys the RIP of order k1 with constant δk1 , it also
does so with constant δk1(k2 − 1)/(k1 − 1) for any order k2 ≥ k1 [158, Theorem 1].)
However, while a widely accepted conjecture in the CS community, NP-hardness of

evaluating the RIP had, to the best of our knowledge, never actually been proven. In
the following, we confirm the intractability rumors by means of several NP-hardness
results. (One such result—hardness of certifying the RIP (2.6) for a given matrix A,
order k and constant δk ∈ (0, 1)—was obtained independently by us [237] and by
the authors of [13].)

38 Chapter 2. Recovery Conditions and Their Computational Complexity

2.4.1.1 NP-hardness of RIC Computation and RIP Certification

First, we employ our results about the spark to establish (weak) NP-hardness of
computing the RIC of a given matrix A with given order k, and of the above-
mentioned RIP certification problem.
We will need the following technical result.

Lemma 2.16. Let A = (aij) ∈ Qm×n be a matrix, α := max{ |aij | :

i ∈ [m], j ∈ [n] }, and define C := 2dlog2(α
√
mn)e. Then Ã := 1

CA satisfies

‖Ãx‖22 ≤ (1 + δ)‖x‖22 for all x ∈ Rn and δ ≥ 0

and its encoding length is polynomial in that of A.

Proof. First, observe that the largest singular value of A, σmax(A), satisfies

σmax(A) = ‖A‖2 ≤ α
√
mn = 2 log2(α

√
mn) ≤ 2dlog2(α

√
mn)e = C.

It follows that, with an arbitrary x ∈ Rn,

‖Ãx‖22 ≤ ‖ 1
CA‖

2
2 ‖x‖22 ≤ 1

σmax(A)2 ‖A‖
2
2‖x‖22 = ‖x‖22 ≤ (1 + δ)‖x‖22

for any δ ≥ 0. Moreover, the encoding lengths of C and of Ã are straightforwardly
seen to be polynomially bounded by that of A, as claimed (note thatm,n ∈ O(〈A〉)).

By the singular value interlacing theorem (see, e.g., [216]), σmax(A) is an upper
bound for the largest singular value of every submatrix of A. Thus, the above lemma
essentially shows that by scaling the matrix A, one can focus on the lower part of
the RIP (2.6) (a similar argument has been derived independently in [13]). This
leads to the following complexity result.

Theorem 2.17. Given a matrix A ∈ Qm×n and a positive integer k, the problem
to decide whether there exists some constant δk < 1 such that A satisfies the RIP of
order k with constant δk is coNP-complete.

Proof. We first show that the problem is in coNP. To certify the “no” answer, it suf-
fices to consider a vector x̃ with 1 ≤ ‖x̃‖0 ≤ k that tightly satisfies (2.6) for δk = 1.
This implies Ax̃ = 0. Clearly, since x̃ is contained in the nullspace N (A) of A, we
can assume that x̃ is rational with encoding length polynomially bounded by that
of A. Then, we can verify 1 ≤ ‖x̃‖0 ≤ k and Ax̃ = 0 in polynomial time, which
shows that the “no” answer can be certified in polynomial time.

2.4. The Restricted Isometry Property (RIP) 39

To show hardness, we reduce the problem to decide whether there exists a circuit
of size at most k, which is NP-complete by Theorem 2.5. (We again identify circuits
by corresponding nullspace vectors to simplify notation.) Consider the matrix Ã

as defined in Lemma 2.16, and note that the circuits of A and Ã coincide, since
nonzero scaling does not affect linear dependencies among columns. We claim that
there exists a circuit x̃ with 1 ≤ ‖x̃‖0 ≤ k if and only if Ã violates (2.6) for all δk < 1.
Since deciding the former question is NP-complete, this completes the proof.
Clearly, if such an x̃ 6= 0 exists, then

(1− δk)‖x̃‖22 ≤ ‖Ãx̃‖22 = 0

implies that we must have δk ≥ 1.
For the converse, assume that there does not exist any δk < 1 for which (2.6)

holds. By Lemma 2.16, the upper part of (2.6) is always satisfied. Consequently,
there must exist a vector x̂ with 1 ≤ ‖x̂‖0 ≤ k such that the lower part is tight, i.e.,

0 ≥ (1− δk)‖x̂‖22 = ‖Ãx̂‖22 ≥ 0.

This implies that x̂ ∈ N (Ã), i.e., Ãx̂ = 0. Thus, there also exists a circuit x̃ with
1 ≤ ‖x̃‖0 ≤ k, which shows the claim.

Obviously, knowledge of the value of δk allows us to answer the decision problem
of Theorem 2.17. Hence, we immediately obtain the following complexity result.

Corollary 2.18. For a given matrix A ∈ Qm×n and positive integer k, it is NP-hard
to compute the RIC δk.

Remark 2.19. Clearly, under the standard assumption that rank(A) = m ≤ n, it
must necessarily hold that δk ≥ 1 for any k > m, since spark(A) ≤ m+ 1.

As seen at the beginning of Section 2.4, in RIP-based SRCs that establish (for
instance) `0-`1-equivalence, one is particularly interested in whether the RIP is sat-
isfied with a specific δk = δ ∈ (0, 1) (or whether δk < δ) for some fixed δ < 1; this
type of question differs from the one considered in Theorem 2.17. Nevertheless, we
show in the following that the RIP certification problem—i.e., deciding whether a
matrix A satisfies the RIP with given order k and given constant δk ∈ (0, 1)—is
indeed also (co)NP-hard. (As mentioned earlier, the main arguments used in the
proofs of the following lemma and theorem have also been independently derived by
the authors of [13].)
The following observation is essential.

40 Chapter 2. Recovery Conditions and Their Computational Complexity

Lemma 2.20. Given a matrix A ∈ Qm×n and a positive integer k, if spark(A) > k,
then there exists a constant ε > 0 with encoding length polynomially bounded by that
of A such that ‖Ax‖22 ≥ ε ‖x‖22 for all x with ‖x‖0 ≤ k.

Proof. Assume w.l.o.g. that A has only integer entries (this can always be achieved
by scaling with the least common denominator of the matrix entries, which influ-
ences ε by a polynomial factor only).
Define α as in Lemma 2.16. Note that spark(A) > k implies that every sub-

matrix AS with S ⊆ [n], |S| ≤ k, has linearly independent columns. Consider an
arbitrary such S; then, A>SAS is positive definite, so its smallest eigenvalue fulfills
λmin(A>SAS) > 0, and also, det(A>SAS) > 0. Moreover, since the absolute val-
ues of entries of A are integers in {0, 1, . . . , α}, the absolute values of the entries
of A>SAS are also integral and lie in {0, 1, . . . ,mα2}. Hence, it must in fact hold
that det(A>SAS) ≥ 1 and λmin(A>SAS) ≥ 1. Using the well-known eigenvalue-based
identity of the determinant, it follows that

1 ≤ det(A>SAS) =

|S|∏
i=1

λi(A
>
SAS) ≤ λmin(A>SAS) · λmax(A>SAS)k−1

≤ λmin(A>SAS)

(
|S| · max

1≤i,j≤|S|
|(A>SAS)ij |

)k−1

≤ λmin(A>SAS)
(
kmα2

)k−1
.

Consequently, we have that

λmin(A>SAS) ≥ 1

(kmα2)k−1
=: ε > 0. (2.8)

Since S was arbitrary, ‖Ax‖22 ≥ λmin(A>SAS)‖x‖22 ≥ ε‖x‖22 holds for all x with
support S ⊆ [n], |S| ≤ k. Moreover, the encoding length of α, and therefore that
of ε, is clearly polynomially bounded by the encoding length of A, which completes
the proof.

Theorem 2.21. Given a matrix A ∈ Qm×n, a positive integer k, and some rational
constant δk ∈ (0, 1), it is NP-hard to decide whether A satisfies the RIP of order k
with constant δk.

Proof. Consider a matrix Ã as in Lemma 2.16, so we can again focus on the lower
inequality of the RIP. Clearly, if Ã has a circuit of size at most k, Ã cannot satisfy the
RIP of order k with any given δk ∈ (0, 1), since in this case, ‖Ãx̃‖22 = 0 < (1−δk)‖x̃‖22
for some x̃ with 1 ≤ ‖x̃‖0 ≤ k. Moreover, Lemma 2.20 shows that if Ã has no circuit
of size at most k, Ã satisfies the RIP of order k with constant 1 − ε̃ ∈ (0, 1),
where ε̃ has encoding length polynomially bounded by k and that of Ã, cf. (2.8).

2.4. The Restricted Isometry Property (RIP) 41

By Theorem 2.17, it is coNP-complete to decide whether there exists a constant
δk < 1 such that Ã satisfies the RIP of a given order k with this constant. But as
seen above, such a constant exists if and only if Ã satisfies the RIP of k with the
constant 1− ε̃, too. Thus, deciding whether the RIP holds for a given matrix, order
and constant is (co)NP-hard.

In fact, we also obtain NP-hardness for the problem variant which asks to certify
that δk < δ for a given δ ∈ (0, 1):

Corollary 2.22. Given a matrix A ∈ Qm×n, a positive integer k, and some rational
constant δ ∈ (0, 1), it is NP-hard to decide whether there exists some constant δk < δ

such that A satisfies the RIP of order k with constant δk.

Proof. The proof of Theorem 2.21 can be directly extended to the problem at hand
by setting δ = 1− ε̃/2 (or any other value 1− ε̃/r with 1 < r ∈ Q).

Remark 2.23. It is an open question whether the decision problems in Theo-
rem 2.21 and Corollary 2.22 are contained in coNP.

Remark 2.24. Clearly, Theorem 2.21 leads to another easy proof for Corollary 2.18
(and Corollary 2.25 below): Computing the (lower asymmetric) RIC would also
decide the RIP certification problem. On the other hand, our proof of Theorem 2.21
essentially reduces the RIP certification problem to the setting of Theorem 2.17,
which therefore can be seen as a core RIP hardness result (by establishing the direct
link to spark computations); see also Remark 2.34 below.

2.4.1.2 Asymmetric RIP Constants and Strong NP-hardness of Sparse PCA
and RIC Computation

It has been remarked in [31] that the symmetric nature of the RIP can be overly
restrictive. In particular, the influence of the upper inequality in (2.7) is often
stronger, although the lower inequality is more important in the context of sparse
recovery. For instance, the often stated condition δ2k < 1 for uniqueness of k-sparse
solutions (see, e.g., [48]) should in fact read δL2k < 1, where

δLk := min
δ≥0

δ s.t. (1− δ)‖x‖22 ≤ ‖Ax‖22 ∀x : ‖x‖0 ≤ k

is the lower asymmetric restricted isometry constant [31] (see also [110]). Corre-
spondingly, the upper asymmetric RIC is

δUk := min
δ≥0

δ s.t. (1 + δ)‖x‖22 ≥ ‖Ax‖22 ∀x : ‖x‖0 ≤ k.

42 Chapter 2. Recovery Conditions and Their Computational Complexity

The central argument in the proof of Theorem 2.17 in fact shows the following:

Corollary 2.25. Given a matrix A ∈ Qm×n and a positive integer k, it is NP-hard
to compute the lower asymmetric RIC δLk .

Moreover, the next result settles the computational complexity of computing the
upper asymmetric RIC δUk .

Theorem 2.26. Given a matrix A ∈ Qm×n, a positive integer k and a rational
parameter δ > 0, it is NP-hard in the strong sense to decide whether δUk < δ, even in
the square case m = n. Consequently, it is strongly NP-hard to compute the upper
asymmetric RIC δUk .

To prove this theorem, we need some auxiliary results. In particular, we will show
that solving the so-called sparse principal component analysis problem is strongly
NP-hard (see Proposition 2.29 and Remark 2.30 below). We then extend the ar-
guments to prove Theorem 2.26 and thus, ultimately, that the NP-hardness of RIC
computation in fact also holds in the strong sense (Corollary 2.32).

Lemma 2.27. Let G = (V,E) be a simple undirected graph with n = |V | ≥ 2 and
let AG be its n× n adjacency matrix, i.e., (AG)ij = 1 if {i, j} ∈ E and 0 otherwise
(in particular, on the diagonal). Denote by Kn the complete graph with n vertices.

1. If G = Kn, i.e., G is a clique, then AG has eigenvalues −1 and n − 1 with
respective multiplicities n− 1 and 1.

2. Removing an edge from G does not increase λmax(AG). In fact, if G is con-
nected, this strictly decreases λmax(AG).

3. If G = Kn \ e, i.e., a clique with any one edge e ∈ E removed, then the largest
eigenvalue of AG is (n− 3 +

√
n2 + 2n− 7)/2.

Proof. The first two statements can be found in, or deduced easily from, [39, Chap-
ter 1.4.1 and Proposition 3.1.1], respectively. The third result is a special case of
[112, Theorem 1].

Remark 2.28. Lemma 2.27 shows that, in a graph G = (V,E) with |V | ≥ 2,
the largest eigenvalue of the adjacency matrix of any induced subgraph with k ∈
{2, . . . , |V |} vertices is either k − 1 (if and only if the subgraph is a k-clique) or at
most (k − 3 +

√
k2 + 2k − 7)/2.

2.4. The Restricted Isometry Property (RIP) 43

Proposition 2.29. Given a matrix H ∈ Qn×n, a positive integer k ≤ n and a
parameter λ > 0, it is coNP-complete in the strong sense to decide whether λ(k)

max < λ,
where

λ(k)
max := max{x>Hx : ‖x‖22 = 1, ‖x‖0 ≤ k } (2.9)

= max{λmax(HSS) : S ⊆ [n], |S| ≤ k }.

Consequently, solving (2.9)—known as the sparse principal component analysis
(Sparse PCA) problem—is strongly NP-hard.

Proof. We reduce from the k-Clique Problem. LetG = (V,E) be a simple undirected
graph with n vertices (w.l.o.g., n ≥ k ≥ 2). From G, construct its n× n adjacency
matrix AG. By the previous lemma, G contains a k-clique if and only if λ(k)

max(AG) =

k−1 =: λ. (Note that λ(k)
max ≤ k−1 always holds by construction.) Hence, the Sparse

PCA decision problem has a negative answer for the instance (AG, k, λ) if and only
if the k-Clique Problem has a positive answer. Since the latter is NP-complete in
the strong sense, and because all numbers appearing in the constructed Sparse PCA
instance, and their encoding lengths, are polynomially bounded by n, the former is
strongly (co)NP-hard.
Moreover, consider a “no” instance of the Sparse PCA decision problem. Then,

as we just saw, there is a k-clique S in G, and it is easily verified that x̂ with
x̂i = 1/

√
k for i ∈ S, and zeros everywhere else, achieves x̂>AG x̂ = λ

(k)
max(AG) = λ.

Scaling (2.9) by k, we see that equivalently,

k λ(k)
max = max{x>AG x : ‖x‖22 = k, ‖x‖0 ≤ k } = k λ = k2 − k.

Thus, a rational certificate for the “no” answer is given by the vector x̃ with x̃i = 1

for i ∈ S, and zeros everywhere else. Since we can clearly check all constraints on x̃
(from the scaled problem) and that x̃>AG x̃ = kλ in polynomial time, the Sparse
PCA decision problem is contained in coNP.

Remark 2.30. The Sparse PCA problem (see, e.g., [177, 144, 77, 78, 270]) is often
mentioned to be (NP-)hard, but we could not locate a rigorous proof of this fact.
In [23, Section 6], the authors sketch a reduction from the k-Clique Problem but
do not give the details; the central spectral argument mentioned there, however, is
exactly what we exploit in the above proof.

We will extend the proof of Proposition 2.29 to show Theorem 2.26 by suitably
approximating the Cholesky decomposition of a matrix very similar to the adjacency
matrix; the following technical result will be useful for this extension.

44 Chapter 2. Recovery Conditions and Their Computational Complexity

Lemma 2.31. Let AG be the adjacency matrix of a simple undirected graph G =

(V,E) with n vertices, and let H := AG + n2I. Then H has a unique Cholesky
factorization H = LDL> with diagonal matrix D = Diag(d1, . . . , dn) ∈ Qn×n and
unit lower triangular matrix L = (`ij) ∈ Qn×n, whose respective entries fulfill (for
all i, j ∈ [n], i 6= j)

di ∈
[
n4 − 2n+ 2

n2
, n2

]
and `ij ∈

[
2− n2 − 2n

n4 − 2n+ 2
,

2n− 2

n4 − 2n+ 2

]
.

Proof. With deg(v) denoting the degree of a vertex v of G, and λi(AG), i = 1, . . . , n,
the eigenvalues of AG, it holds that

‖AG‖2 = max
1≤i≤n

{
|λi(AG)|

}
≤
√
n ‖AG‖∞ < n max

v∈V

{
deg(v)

}
< n2.

Thus, it is easy to see that H = AG + n2I is (symmetric) positive definite; in
particular, the eigenvalues of H obey λi(H) = λi(AG) + n2 > 0 for all i. Then,
H has a unique Cholesky factorization H = LDL>, and L ∈ Qn×n (unit lower
triangular) and D ∈ Qn×n (diagonal) can be obtained by Gaussian elimination; see,
e.g., [118, Section 4.9.2] or [121, Section 4.2.3].
Let H(0) := H and let H(k) = (h

(k)
ij) be the matrix obtained from H after k

iterations of (symmetric) Gaussian elimination. There are n − 1 such iterations,
and each matrix H(k) has block structure with Diag(d1, . . . , dk) in the upper left
part and a symmetric positive definite matrix in the lower right block. We show by
induction that for all k ∈ [n], and all i, j ∈ {0, . . . , n− k},

h
(k−1)
k+i,k+i ∈

[
n2 − 2(k − 1)

n2
, n2

]
(2.10)

and (for i 6= j)

h
(k−1)
k+i,k+j ∈

[
−2(k − 1)

n2
, 1 +

2(k − 1)

n2

]
. (2.11)

Clearly, by construction of H, h(0)
ii = n2 and h(0)

ij ∈ {0, 1} for all i, j ∈ [n], i 6= j, so
(2.10) and (2.11) hold true for k = 1.
Suppose they hold for some k ∈ [n−1], i.e., throughout the first k−1 iterations of

the Gaussian elimination process. Performing the k-th iteration, we obtain h(k)
ik =

h
(k)
ki = 0 for all i > k, h(k)

kk = h
(k−1)
kk , and

h
(k)
k+i,k+j = h

(k−1)
k+i,k+j −

h
(k−1)
k+i,k

h
(k−1)
kk

· h(k−1)
k,k+j for all i, j ∈ [n− k]. (2.12)

2.4. The Restricted Isometry Property (RIP) 45

Thus, in particular, by symmetry of H(k−1), for any i ∈ [n− k],

h
(k)
k+i,k+i = h

(k−1)
k+i,k+i −

h
(k−1)
k+i,k

h
(k−1)
kk

· h(k−1)
k,k+i = h

(k−1)
k+i,k+i −

(
h

(k−1)
k+i,k

)2
h

(k−1)
kk

. (2.13)

Applying the induction hypothesis (2.10) to (2.13) yields the first interval inclusion
(note that h(k−1)

kk > 0, so h(k)
k+i,k+i ≤ h

(k−1)
k+i,k+i):

n2 ≥ h
(k−1)
k+i,k+i ≥ h

(k)
k+i,k+i ≥ n2 − 2(k − 1)

n2
−
(
1 + 2(k−1)

n2

)2(
n2 − 2(k−1)

n2

)
= n2 − 2(k − 1)

n2
−
n2 + 4(k − 1) + 4(k−1)2

n2

n4 − 2k + 2︸ ︷︷ ︸
≤ 2/n2

≥ n2 − 2k

n2
. (2.14)

Similarly, for the off-diagonal entries h(k)
k+i,k+j with i, j ∈ [n− k], i 6= j, from (2.12)

and (2.11) we obtain

h
(k)
k+i,k+j ≤ 1 +

2(k − 1)

n2
−
(
− 2(k−1)

n2

)(
1 + 2(k−1)

n2

)(
n2 − 2(k−1)

n2

)
= 1 +

2(k − 1)

n2
+

2(k − 1) + 4(k−1)2

n2

n4 − 2k + 2︸ ︷︷ ︸
≤ 2/n2

≤ 1 +
2k

n2

and (compare with (2.14))

h
(k)
k+i,k+j ≥ −

2(k − 1)

n2
−
(
1 + 2(k−1)

n2

)2(
n2 − 2(k−1)

n2

) ≥ 2− 2k

n2
− 2

n2
= −2k

n2
,

which shows the second interval inclusion and completes the induction.
The statement of the lemma now follows from observing that dk = h

(k−1)
kk for

all k ∈ [n], and because the entries in the lower triangular part of L, i.e., `ij with
i > j, j ∈ [n − 1], contain precisely the negated elimination coefficients (from the
j-th iteration, respectively), whence

2− n2 − 2n

n4 − 2n+ 2
= −

(
1 + 2(n−1)

n2

)(
n2 − 2(n−1)

n2

) ≤ `ij = −
h

(j−1)
ij

h
(j−1)
jj

= −
h

(j−1)
ij

dj

≤ −
(
− 2(n−1)

n2

)(
n2 − 2(n−1)

n2

) =
2n− 2

n4 − 2n+ 2
.

46 Chapter 2. Recovery Conditions and Their Computational Complexity

(By construction, `ii = 1 and `ij = 0 for all i ∈ [n], j > i.) This concludes the
proof.

Proof of Theorem 2.26. Given an instance (G, k) for the k-Clique Problem, we
construct H = AG + n2I from the graph’s adjacency matrix AG (w.l.o.g., n ≥ 2).
From the proof of Proposition 2.29, recall that G has no k-clique if and only if
λ

(k)
max(AG) < k − 1, or equivalently λ(k)

max(H) < n2 + k − 1 (cf. the beginning of the
proof of Lemma 2.31). Let D and L be the Cholesky factors of H, i.e., H = LDL>.
Letting D1/2 := Diag(

√
d1, . . . ,

√
dn), observe that the upper asymmetric RIC for

the matrix A′ := D1/2L> can be written as

δUk (A′) = max
{
x>LD1/2D1/2L>x : ‖x‖22 = 1, ‖x‖0 ≤ k

}
− 1 = λ(k)

max(H)− 1.

Consequently, G has a k-clique S if and only if H has a k × k submatrix HSS with
largest eigenvalue n2 + k − 1, i.e., δUk (A′) = n2 + k − 2. Moreover, by Lemma 2.27,

λmax(HTT) ≤ n2 + (k − 3 +
√
k2 + 2k − 7)/2 < n2 + k − 1

for any incomplete induced subgraph of G with vertex set T , |T | = k. However,
while L and D are rational, D1/2 can contain irrational entries, so we cannot di-
rectly use A′ as the input matrix for the upper asymmetric RIC decision problem.
The remainder of this proof shows that we can replace D1/2 by a rational approxi-
mation to within an accuracy that still allows us to distinguish between eigenvalues
associated to k-cliques and those belonging to incomplete induced subgraphs.
Let us consider the rational approximation obtained by truncating each

√
di after

the p-th decimal number (we will specify p later), i.e., let D̃1/2 := Diag(r1, . . . , rn)

with ri := b10p
√
dic/10p. Thus, ri ≤

√
di and

√
di− ri ≤ 10−p for all i by construc-

tion, and in particular, since d1 = n2 (see Lemma 2.31), r1 = n. Consequently,

‖D1/2 − D̃1/2‖2 = max
1≤i≤n

{
|
√
di − ri|

}
= max

2≤i≤n

{√
di − ri

}
≤ 10−p.

Denoting D̃ := D̃1/2D̃1/2 and using di ≤ n2 (true by Lemma 2.31), we obtain

‖D − D̃‖2 = max
2≤i≤n

{
di − r2

i

}
= max

2≤i≤n

{
(
√
di + ri)(

√
di − ri)

}
≤ 10−p · 2 · max

2≤i≤n

{√
di, ri

}
≤ 2 · 10−p · n.

Let H̃ := LD̃L> and note that, for all i, j ∈ [n], we have hij =
∑n
q=1 dq`iq`jq and

h̃ij =
∑n
q=1 r

2
q`iq`jq. Since |`ij | ≤ 1 for all i, j (by Lemma 2.31), and by symmetry

2.4. The Restricted Isometry Property (RIP) 47

of H and H̃, it follows that

|(H − H̃)ij | = |(H − H̃)ji| =
∣∣∣ n∑
q=1

(dq − r2
q)`iq`jq

∣∣∣
≤

n∑
q=1

|dq − r2
q | |`iq| |`jq| ≤

n∑
q=1

(dq − r2
q) ≤ 2 · 10−p · n2.

Thus, we have H̃ = H + Ẽ, where |Ẽij | ≤ 2 · 10−p · n2 and Ẽ is also symmetric.
Note that, for any S ⊆ [n],

λmax(ẼSS) ≤ λmax(Ẽ) = ‖Ẽ‖2 ≤
√
‖Ẽ‖1 · ‖Ẽ‖∞

≤
√

(n · 2 · 10−p · n2)(n · 2 · 10−p · n2) = 2 · 10−p · n3.

Therefore (cf., e.g., [121, Corollary 8.1.6]), we have for all S ⊆ [n] that

|λi(HSS)− λi(H̃SS)| ≤ ‖ẼSS‖2 = λmax(ẼSS) ≤ 2 · 10−p · n3

for all i = 1, . . . , |S|. Consequently, if S induces a k-clique, we have

λmax(H̃SS) ≥ n2 + k − 1− 2 · 10−p · n3, (2.15)

whereas for any T ⊆ [n] with |T | = k that does not induce a clique, it holds that

λmax(H̃TT) ≤ n2 +
k − 3 +

√
k2 + 2k − 7

2
+ 2 · 10−p · n3. (2.16)

Now fix p := 1 + d4 log10(n)e, and let an instance for the upper asymmetric RIC
decision problem be given by A := D̃1/2L> (where D̃1/2 is computed from the
Cholesky factors L and D of H = AG + n2I using this precision parameter p),
δ := n2 + k − 2− 2 · 10−p · n3, and k.
If G has a k-clique then, by (2.15), δUk (A) ≥ δ, and if not, δUk (A) ≤ n2 + (k− 3 +√
k2 + 2k − 7)/2 + 2 · 10−p · n3 − 1 by (2.16). In fact, our choice of p implies

p > log10(8) + 4 log10(n) ⇒ 10p > 8n4 >
8n3

k + 1−
√
k2 + 2k − 7

,

from which we can derive that

n2 + k − 1− 2 · 10−p · n3 > n2 +
k − 3 +

√
k2 + 2k − 7

2
+ 2 · 10−p · n3,

48 Chapter 2. Recovery Conditions and Their Computational Complexity

which shows that δUk (A) < δ if no k-clique is contained in G. Therefore, G has a
k-clique if and only if δUk (A) ≥ δ, i.e., the upper asymmetric RIC decision problem
under consideration has a negative answer.
Clearly, all computations in the above reduction can be performed in polynomial

time (in particular, this holds true for rational approximation, cf. [128, Section 1.3]).
To see that the encoding length 〈A〉 of A is in fact polynomially bounded by n, note
that hij ∈ {0, 1, n2} for all i, j, whence 〈H〉 ∈ O(poly(n)). Since Gaussian elim-
ination can be implemented to lead only to a polynomial growth of the encoding
lengths [128], it follows that 〈L〉,〈D〉 ∈ O(poly(〈H〉)) = O(poly(n)). In partic-
ular, the entries of D̃1/2 then also have encoding length polynomially bounded
by n, by construction of the rational approximation. This shows that indeed
〈aij〉 ∈ O(poly(n)) for all i, j. Furthermore, all the numerical values aij are also
polynomially bounded by n (in fact, |aij | ≤ n, by Lemma 2.31 and the construction
of D̃1/2). Moreover, 0 < δ < n2 + n and, clearly, its encoding length 〈δ〉 is bounded
polynomially by n as well.
Thus, since the Clique Problem is well-known to be NP-complete in the strong

sense, and because our polynomial reduction in fact preserves boundedness of the
numbers within O(poly(n)), the upper asymmetric RIC decision problem is (co)NP-
hard in the strong sense. This completes the proof of Theorem 2.26.

In fact, observe that for the matrix A constructed in the proof of Theorem 2.26,
the upper asymmetric RIC is always larger than the lower asymmetric RIC, whence
the former coincides with the (symmetric) RIC δk of A. Thus, the following result
holds true, which slightly strengthens Corollary 2.18.

Corollary 2.32. Given a matrix A ∈ Qm×n and a positive integer k, it is NP-hard
in the strong sense to compute the RIC δk, even in the square case m = n.

Remark 2.33. Similarly to the RIP certification problem, containment in coNP
of the decision problem from Theorem 2.26 remains an open question. (Although
we reduce from the Sparse PCA decision problem from Proposition 2.29, we may
not simply use the same certificate because it is not generally valid for the upper
asymmetric RIC problem, only for the instance constructed in the above proof.)

It is noteworthy that we can easily extend the construction from the proof of
Theorem 2.26 to cover the non-square case m < n as well. The idea is as follows:
For instance, let B be the matrix from Example 2.4, and replace A in the above
proof by the block diagonal matrix Â which has A in the first block and B in the
second. This matrix has dimensions (n + 3) × (n + 4), and since the eigenvalues
of B>B are contained in [0, 5), it is easy to see that, whenever n ≥ 3 and k ≥ 3

2.5. The Nullspace Property (NSP) 49

(which can be assumed without loss of generality in the extended proof), n2 + (k−
3 +
√
k2 + 2k − 7)/2 − 2 · 10−p · n3 ≥ 5. Then, the relation between eigenvalues of

symmetrically chosen submatrices and cliques is indeed the same for Â>Â as for
A>A itself, and the extended proof works completely analogously to the one above.
A similar idea is exploited in the proof of [159, Theorem 6].

Remark 2.34. The (weak) NP-hardness result Theorem 2.17 (which yielded Corol-
lary 2.18) remains of interest in its own right, as it reveals, for instance, the intrinsic
relation between the k-sparse solution uniqueness conditions 2k < spark(A) and
δ2k < 1 (or δL2k < 1, respectively, see Corollary 2.25); consequently, verifying unique-
ness via these conditions is NP-hard because deciding whether spark(A) ≤ k is.
Moreover, were we to scale down A in the above proof to achieve δ < 1, we could

not be certain anymore that the RIC coincides with the upper asymmetric RIC, not
the lower. (In fact, as seen in Lemma 2.16, we can eliminate the dependence of the
symmetric RIC on the upper RIP part completely by scaling A to have ‖A‖2 ≤ 1.)
Hence, in particular, we cannot simply transfer the “strong” part of the above NP-
hardness result to the RIP certification problems considered in Theorem 2.21 and
Corollary 2.22 (which require δ < 1 by definition). Nevertheless, one could say that
NP-hardness of computing the RIC δk persists independently of the scaling of A,
either by Theorem 2.17 (Corollary 2.18) or Theorem 2.26 (Corollary 2.32).

2.5 The Nullspace Property (NSP)

Another popular tool for guaranteeing `0-`1-equivalence is the nullspace property
(NSP), see, e.g., [92, 266, 64, 145], which characterizes recoverability by (P1) for
sufficiently sparse solutions of (P0). (In fact, this extends to `p-minimization with
0 < p ≤ 1, see [126, 81].) The NSP of order k is satisfied with constant αk if for all
vectors x ∈ N (A), it holds that

‖x‖k,1 ≤ αk‖x‖1, (2.17)

where ‖x‖k,1 denotes the sum of the k largest absolute values of entries in x. The
NSP guarantees uniqueness of k-sparse optimal solutions of (P1) whenever (2.17)
holds with some constant αk < 1/2. Hence, similar to the RIP case, one is interested
in the smallest constant such that (2.17) is fulfilled (given A and k); we call this the
nullspace constant (NSC), which can be formally defined as

αk := min α s.t. ‖x‖k,1 ≤ α‖x‖1 for all x with Ax = 0,

50 Chapter 2. Recovery Conditions and Their Computational Complexity

or equivalently,

αk := max ‖xS‖1 s.t. Ax = 0, ‖x‖1 = 1, S ⊆ [n], |S| ≤ k.

Indeed, if and only if αk < 1/2, then any instance of (P1) with b := Ax̃, ‖x̃‖0 ≤ k,
has the unique solution x̃. Most importantly, it can be shown that x̃ then also
uniquely solves (P0); see [111, Remark 4.6] for details. Moreover, one can also give
NSP-based error bounds for recovery in the denoising case, see, e.g., [64, 165].

Remark 2.35. The NSP-based characterization of `0-`1-equivalence implies that if
αk ≥ 1/2, (P0) might still have a k-sparse and unique optimal solution, but such a
solution cannot always be recovered by Basis Pursuit (in particular, k < spark(A)/2

does not imply, but is necessary for, αk < 1/2). On the other hand, if we focus on a
specific index set S instead of all sets of a given cardinality k, then the corresponding
NSP variant “‖xS‖1 < ‖xSc‖1 for all 0 6= x ∈ N (A)” gives an individual recovery
guarantee for all x̂ with supp(x̂) = S as unique solutions of BP instances with
b = Ax̂, cf. [111, Theorem 4.4].

Thus, for sufficiently small k, the order-k NSP provides a both necessary and
sufficient SRC (for uniform k-sparse recovery), whereas those based on the ERC,
mutual coherence or RIP are only sufficient. The possible discrepancy in informative
value of the corresponding SRCs is illustrated by the following toy example.

Example 2.36. Consider the 7× 8 full-rank matrix

A :=
1√
2

1 1 1 0 0 0 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 1 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 1

0 0 0 1 1 0 0 1

.

Clearly, µ(A) = 1/2 = δ2 and in fact, δ3 > 1 already. Thus, neither the mutual
coherence nor the RIP guarantee recovery of any k-sparse vectors beyond the trivial
case k = 1. However, it is easy to check that spark(A) = 6, so we know that any 2-
sparse x̂ is the unique solution to (P0) with the above A and b := Ax̂. Moreover, it is
easy to see that all nullspace vectors of A have nonzero entries with identical absolute
values (indeed, here, N (A) = span{(0,−1, 1,−1, 0, 1,−1, 1)>}). Consequently, the
NSP holds with αk < 1/2 for all 1 ≤ k ≤ 2 < spark(A)/2 = 3. In particular, this
shows that whenever an instance of (P0) with this A has a unique sparsest solution

2.5. The Nullspace Property (NSP) 51

with no more than 2 nonzero entries, it can be recovered by (P1). Note also that the
ERC (2.3) does not identify the recoverability of all 2-sparse vectors; for instance,
erc(A,S) = 1 for S = {1, 2}.
Moreover, the fact that ‖x∗‖0 < spark(A)/2 is not necessary for some x∗ to be the

unique sparsest solution of Ax = b := Ax∗, cf. Remark 2.3, is further illustrated by,
for instance, x∗ = (1, 1, 1, 0, 0, 0, 0, 0)> (which gives b = (1/

√
2)(3, 1, 0, 1, 1, 0, 0)>).

In fact, none of the discussed SRCs (except for the “individual NSP” variant from
Remark 2.35) indicate that this particular x∗ could be recovered by either (P0)
or (P1); however, x∗ is indeed both the unique sparsest solution (which can easily
be verified directly) and the unique `1-minimizer for A and the above b (by strict
complementarity w.r.t. the corresponding dual optimal solution (

√
2, 0, 0, 0, 0, 0, 0)>;

see also Remark 3.3 later on). Similarly, for S = {2, 3, 4}, even the individual NSP
from Remark 2.35 does not hold, but with x∗ = (0, 1, 1, 1, 0, 0, 0, 0)> we again find
a unique optimal solution of the respective (P0) and (P1) instances consisting of A
and b := Ax∗.

Remark 2.37. The NSP has been stated in several different, but equivalent, forms,
see, e.g., [266, 77, 64], or (2.18) below. Moreover, it is known that the NSP-based
SRC αk < 1/2 is equivalent to the necessary and sufficient recovery conditions
described in terms of s-goodness (or strict s-balancedness of N (A)) [145], with s ≡ k,
or the (k-uniform) Range Space Property for A> [267] (see also [114, 125, 265,
264, 145], and Remark 3.3 on page 60), and is actually sometimes called nullspace
property itself (e.g., in [108]).

2.5.1 Complexity of Computing the Nullspace Constant

The computation of αk has also long been suspected to be NP-hard, and several
heuristics have been developed to compute good bounds on αk, e.g., the semidefinite
programming approaches in [76, 77] or an LP-based relaxation in [145]. Note also
that, e.g., if the order-2k RIC of A satisfies δ2k < 1/3 then the NSP of order k
holds with αk < 1/2 (and every k-sparse vector is the unique solution to both (P0)
and (P1)), see [108, Theorem 2.6]. Clearly, this could in turn be combined with
incoherence-based RIP bounds, cf. the beginning of Section 2.4.
Regarding exact algorithms to determine the NSC αk, the only work we are aware

of is the very recent [61], in which a lower/upper-bound-“sandwiching” procedure is
proposed and empirically demonstrated (but not generally guaranteed) to be faster
than brute force. In fact, no general exact method besides exhaustive search appears
to be known. However, it seems that no rigorous proof of (NP-)hardness had been

52 Chapter 2. Recovery Conditions and Their Computational Complexity

given either, prior to our work: The following results show that computing αk is
indeed a challenging problem.

Theorem 2.38. Given a matrix A ∈ Qm×n and a positive integer k, the problem
to decide whether A satisfies the NSP of order k with some constant αk < 1 is
coNP-complete.

Proof. First, note that the NSP (2.17) is equivalent to the condition that

‖xS‖1 ≤ αk ‖x‖1 (2.18)

holds for all S ⊆ [n] with |S| ≤ k, and all x ∈ Rn with Ax = 0. Clearly, (2.17)
and (2.18) are always satisfied for some αk ∈ [0, 1].
We first prove that the considered decision problem is in coNP. To certify the

“no” answer, it suffices to consider a vector x̃ 6= 0 with Ax̃ = 0 and a nonempty set
S ⊆ [n] with |S| ≤ k that tightly satisfy (2.18) for αk = 1. This implies that S
contains the support of x̃. Thus, 1 ≤ ‖x̃‖0 ≤ k. Clearly, since x̃ is contained
in the nullspace N (A) of A, it can be assumed to be rational with encoding length
polynomially bounded by that of A. This shows that the “no” answer can be certified
in polynomial time.
To show hardness, we claim that the matrix A has a circuit of size at most k (i.e.,

spark(A) ≤ k) if and only if there does not exist any αk < 1 such that (2.17) holds.
Since the former problem is NP-complete by Theorem 2.5, this completes the proof.
Assume A has a circuit of size at most k. Then there exists a vector x ∈ N (A) with

1 ≤ ‖x‖0 ≤ k. It follows that ‖x‖k,1 = ‖x‖1. Thus, validity of (2.17) necessitates
αk ≥ 1. (Since, trivially, αk ≤ 1 is always possible, we could take αk = 1.)
Conversely, assume that there exists no αk < 1 such that (2.17) holds for A

and k. This implies that there is a vector x with Ax = 0 such that ‖x‖k,1 = ‖x‖1
and 1 ≤ ‖x‖0 ≤ k, because otherwise, αk < 1 would be possible. But this means
that the support of x contains a circuit of A of size at most k, which shows the
claim.

We immediately obtain the following.

Corollary 2.39. Given a matrix A ∈ Qm×n and a positive integer k, it is NP-hard
to compute the nullspace constant αk.

2.6. Summary 53

Clique

Sparse PCA

Spark

spark(A)

RIP (δk < 1 ?)

RIP certification

RIC δk

NSP (αk < 1 ?) NSC αk

Thm. 2.5

Prop. 2.29
Thm. 2.26, Cor. 2.32

Cor. 2.9

Thm. 2.17

Thm. 2.21

Cor. 2.18

Thm. 2.38

Cor. 2.39

Figure 2.1. Schematic overview of the main SRC hardness results. Decision problems are
set in rectangular boxes, computation problems in boxes with rounded corners; white back-
ground signals NP-hardness (for decision problems: NP-completeness), dark gray indicates
coNP-completeness, and light gray means NP-hardness by reduction from a coNP-complete
problem.

2.6 Summary

We conclude this chapter with two overviews:
Firstly, Figure 2.1 summarizes the most important NP-hardness results we ob-

tained in the preceding sections. The arrows in the depicted diagram indicate the
polynomial reductions employed in the proofs of the corresponding results (specified
in the respective labels). A dashed line indicates an alternative way of proof; thick
lines correspond to strong NP-hardness proofs (regular solid lines pertain to weak
NP-hardness). Recall that the Clique Problem is NP-complete in the strong sense.
Moreover, Figure 2.2 illustrates the implications of the discussed sparse recovery

conditions and the connections between them. Here, we focus entirely on Basis Pur-
suit and when it can be used to solve the actual (noise-free) sparse reconstruction
problem (P0). (For completeness, we also included the characterization of BP solu-
tion uniqueness known as “strong source condition” which incorporates not only S
but also the sign pattern on S; it will be made precise in Remark 3.3 in the next
chapter.)
The number k always refers to the `0-norm and the set S designates the support

54 Chapter 2. Recovery Conditions and Their Computational Complexity

NSP

ERC

RIP

incoherence Spark

(P0) sol. unique

(P1) sol. unique

uniform SRC
(`0-`1-equivalence)

individual SRC
(w.r.t. all x with

supp(x) = S)

strong source cond.
(cf. Remark 3.3)

‖xS‖1< ‖xSc‖1 ∀x∈N (A)\{0}

α k
<

1
2

erc(A,S) <
1

erc(A,
S) <

1 ∀S : |S| ≤
k

(various)

(various)

(various)

if individual SRC
holds ∀S : |S| ≤ k

k < 1
2 spark(A)

uniform k-sparse uniqueness
(cf. Theorem 2.2)

if strong source cond.
holds for all sign patterns on S

if k = |S|
is small
enough

Figure 2.2. Illustration of relations between matrix properties and associated SRCs, and
their implications w.r.t. (P0) and (P1). Uniform SRCs yield `0-`1-equivalence for all k-
sparse vectors; individual recovery conditions pertain to uniqueness of BP solutions with
support S.

of a solution in question. The dashed arrows indicate that one property implies a
certain manifestation of another (such as, e.g., spark(A) ≤ 1 + 1/µ(A)); we only
show the relations mentioned in this chapter, so a missing link does not necessarily
mean that no such connection exists. Solid arrows mark implications—e.g., that the
RIP provides various sufficient conditions for uniform sparse recovery or uniqueness
of the sparsest representation—or equivalences like the NSP-based characterization
of uniform k-sparse recovery via the SRC αk < 1/2. The dotted arrows are natural
relations stemming, essentially, from the definition of `0-`1-equivalence.
Let us emphasize that Figure 2.2 does not give a complete picture of how sparse

solutions to underdetermined linear systems can be efficiently obtained—other ap-

2.6. Summary 55

proaches than BP and the case of approximately sparse solutions are not repre-
sented. However, the strongest known recovery results pertain to (P1); moreover,
Basis Pursuit will be the central problem in the next chapter.

CHAPTER 3
Solving Basis Pursuit

Due to its importance in Compressed Sensing, a broad variety of solution algorithms
has been developed for the Basis Pursuit (BP) problem

min ‖x‖1 s.t. Ax = b, (P1)

for A ∈ Rm×n with rank(A) = m < n and 0 6= b ∈ Rm. (We make these standard
assumptions because, if rank(A) < m, Ax = b might not have a solution at all, but if
a solution of Ax = b does exist, then rank(A) = m ≤ n can be assumed without loss
of generality—otherwise, at least one row is redundant and can be omitted—and
m < n makes the problem nontrivial by allowing different representations of b by
linear combinations of columns of A. Moreover, for b = 0, the trivial optimal solution
of (P1), and also of (P0), is the all-zero vector.) In this chapter, we concentrate
on the practical solution of (P1) and mostly neglect the intricate connections to
the sparse recovery problem (P0) that explain the relevance of BP in Compressed
Sensing.
An important practical concern is the typical slow (local) convergence of iterative

solvers. In Section 3.1, we develop a heuristic method that, if applied repeatedly
during an algorithm, often allows for “jumping” to an optimal point of (P1) and
hence for early termination. This heuristic optimality check (HOC) is based on the
idea that the iterates allow to approximate the support of an optimal solution; using
the support, we try to construct a feasible primal-dual pair. We will show that under
certain conditions the constructed solutions are indeed optimal. It is noteworthy
that HOC is related to, but different from, the idea of support estimation, which
has been used for a penalized version of (P1) to improve solution quality [107] or to
speed up the algorithm [253] and in a modification of Basis Pursuit to enhance the
sparse recovery properties (i.e., with respect to (P0)) [251]. HOC is also similar to

57

58 Chapter 3. Solving Basis Pursuit

the “debiasing” postprocessing routine from [256], but differs from it due to using
approximate supports and, more importantly, the additional construction of a dual
certificate to prove optimality.
A large part of this Chapter (Sections 3.2–3.4) is comprised of an extensive com-

putational comparison of solvers for (P1), including the proposal of a test set con-
taining 100 dense and sparse matrices A and 548 right hand sides b. In general,
such a comparison is complicated by several facts. The most important one is that
the termination requirements for each solver may be different, resulting in final so-
lution points that vary highly in their distance to feasibility and optimality. Of
course, there is a trade-off between feasibility/optimality requirements and perfor-
mance. We cope with this problem by designing the test set in such a way that the
optimal solutions are unique. The results of the solvers are then compared both
with respect to the running time as well as the distance to the optimal point, which
allows to estimate both the distance to feasibility and optimality at the same time.
Earlier comparisons of solvers for `1-related minimization problems can be found,
e.g., in [245, 19, 258, 173].
Another complication is the fact that there is an abundance of possible data and

solvers to choose from. As a consequence, we had to limit the number of tested
solvers and the size of the test set. Concerning the solvers, we decided to only con-
sider algorithms that provably solve (P1) and for which implementations are publicly
available. We are aware of the following six solvers that meet these requirements:
`1-Homotopy, SPGL1, `1-Magic, SolveBP/PDCO, YALL1, and our own contribu-
tion, ISAL1 (which is explained in detail in Section 4.6); additionally, we include
the commercial LP solver Cplex and the noncommercial LP solver SoPlex in our
experiments. All these solvers are briefly reviewed in Section 3.2. Concerning the
test set, we deliberately decided to only consider matrices with an explicit repre-
sentation. Thus, we do not use the ability of several solvers to work with implicit
matrices by callback functions that perform matrix-vector products. The test set
should also be seen independently of `0-`1-equivalence, although we also use tools
from Compressed Sensing to guarantee that the optimal solutions are unique, see
Section 3.3.
The results of our computational solver comparison are presented in Section 3.4.

We investigate the performance and quality of solutions generated by the eight `1-
solvers mentioned above. We also investigate the impact of HOC on six of these
solvers. It turns out that Cplex and SoPlex (using the dual simplex algorithm)
perform remarkably well—this refutes the rumor that standard methods for LP
solving perform badly for `1-minimization. SPGL1, `1-Homotopy, SolveBP/PDCO
and ISAL1 usually produce acceptable solutions within reasonable time. Moreover,
using HOC for early termination significantly improves the solution quality and run-

3.1. Heuristic Optimality Check 59

ning time of SPGL1, `1-Homotopy, ISAL1, SolveBP/PDCO and `1-Magic; YALL1
does not seem to benefit from HOC.
Our computational comparison can be seen as a step towards a common empirical

evaluation of the many different algorithms proposed during the last years. This
can help to select the right algorithm for different (practical) purposes, to further
improve the available implementations, and possibly to create new algorithmic ideas.
Up to Section 3.4, the contents of this chapter are essentially a revised version

of the joint work [174] with Dirk Lorenz and Marc Pfetsch. Additionally, in Sec-
tion 3.5, we present a polynomial reduction from an arbitrary standard-form linear
program to (the dual of) (P1). While it is well-known that (P1) can easily be writ-
ten as an LP, the reverse direction is less obvious, but interesting as well: It shows
that theoretically, every linear program can be solved as a Basis Pursuit problem.
Moreover, while the focus of this chapter clearly lies on (P1), we will briefly turn
to the BP Denoising problem (Pδ1) and its regularization variant (QPλ) in the final
Section 3.6. There, we show how the HOC idea can be applied to these problems
and present a few numerical results to assess its potential in the respective settings.
The test set, implementations of ISAL1 and HOC, as well as comprehensive com-

putational results can be downloaded from wwwopt.mathematik.tu-darmstadt.de/
spear.

3.1 Heuristic Optimality Check

Many algorithms for (P1) produce an (infinite) sequence of points converging to an
optimal point. Typically, (practical) convergence becomes slow towards the end,
i.e., there is a trade-off between solution speed and quality. In this section, we
propose a general method to heuristically compute an optimal point from a given
iterate. Applied repeatedly within an `1-solver, this routine often allows for early
termination.

3.1.1 Theoretical Foundation

The approach is based on the following characterization of optimal solutions of (P1):

Lemma 3.1. A vector x∗ ∈ X := {x : Ax = b } is optimal for the Basis Pursuit
problem (P1) if and only if there exists w ∈ Rm such that A>w ∈ ∂‖x∗‖1.

wwwopt.mathematik.tu-darmstadt.de/spear
wwwopt.mathematik.tu-darmstadt.de/spear

60 Chapter 3. Solving Basis Pursuit

Proof. The normal cone of X is easily seen (e.g., using [221, Lemma 2.38]) to be

NX = { z ∈ Rn : ∃w ∈ Rm : z = A>w } = R(A>)

independently of the actual point (i.e., NX(x) = NX(y) = NX for all x, y ∈ X).
Since NX = −NX , the claimed optimality condition can be rewritten as −∂‖x∗‖1 ∩
NX 6= ∅. The result now follows from Lemma 1.4.

Remark 3.2. The subdifferential of the `1-norm at a point x ∈ Rn is given by

∂‖x‖1 = {h ∈ [−1, 1]n : hi = sign(xi) = xi/|xi| for all i with xi 6= 0 } .

Remark 3.3. The result in Lemma 3.1 is by no means new; for instance, it is also
derived in the proof of [114, Theorem 4] via linear programming duality. Moreover,
if and only if rank(Asupp(x∗)) = ‖x∗‖0 and w (with A>w ∈ ∂‖x∗‖1) can be chosen
such that |(A>w)j | < 1 for all j /∈ supp(x∗), then x∗ is the unique optimal solution
of (P1); this extended condition is known (among other names) as the strong source
condition [125]. (The ERC, see Section 2.2, yields BP solution uniqueness because
it implies this condition with the specific choice of w as the least-squares solution to
(Asupp(x∗))

>w = sign(x∗supp(x∗)).) In fact, requiring the strong source condition to
hold for all k-sparse vectors x (and a given A) is equivalent to asking that A satisfies
the nullspace property of order k with NSC αk < 1/2 (cf. Section 2.5), see [145, 267]
for proofs. Furthermore, the strong source condition can be extended to necessary
and sufficient criteria for uniqueness of optimal solutions for (Pδ1), (QPλ) and the
respective “`1-analysis” problems (in which ‖Bx‖1 with some matrix B replaces ‖x‖1
in the objectives), as well as for (LSτ), see [265, 264].

A consequence of Lemma 3.1 is that, for a given optimal solution x∗ of (P1),
every other vector x ∈ X with the same sign pattern as x∗ must also be optimal,
since then ∂‖x∗‖1 = ∂‖x‖1. (Consequently, multiple optimal solutions can only
exist if X is parallel to a nontrivial non-vertex face of the `1-norm ball with radius
equal to the optimal objective; all points on a face share the same sign pattern,
with possible degeneracy.) Thus, if the iterates xk of a solution algorithm converge
to an optimal solution x∗ with support S∗, we expect that sign(xkS∗) = sign(x∗S∗)

for sufficiently large k; however, xk may still have many more nonzeros than x∗—
although not necessarily, as S∗ could also be approached by inner approximations
supp(xk) ⊂ S∗—and can also be infeasible. Now, the idea is to try to identify S∗

from xk, construct a feasible solution x̂ with support S∗, and prove its optimality
(via Lemma 3.1) by constructing ŵ ∈ Rm with A>ŵ ∈ ∂‖x̂‖1 or, equivalently,
A>S∗ŵ = sign(x̂S∗) and −1 ≤ A>ŵ ≤ 1. To simplify the computations, we only solve
the equation system and then verify whether ŵ obeys the box constraint as well.

3.1. Heuristic Optimality Check 61

Algorithm 3.1 Exact Optimality Check (EOC) for (P1)
Input: matrix A, right hand side vector b 6= 0, vector x
1: deduce candidate (approx.) support S from x
2: if x̂ exists with AS x̂S = b and x̂j = 0 ∀ j /∈ S then
3: compute solution ŵ to A>Sw = sign(x̂S)
4: if ‖A>ŵ‖∞ = 1 then
5: return “success”

Note that if x∗ is the unique optimum, we have |S∗| ≤ m and AS∗ has full
rank. Thus, it suffices to correctly anticipate S∗ and solve AS∗ x̂S∗ = b, x̂i = 0 for
all i /∈ S∗. It then follows that x̂ = x∗ and, in particular, sign(x̂S∗) = sign(x∗S∗).
If x∗ is not unique, or if the above reasoning is applied not to S∗ but to some
arbitrary S ⊃ S∗ inducing a full-rank submatrix AS , the hope is that sign(x̂S∗) =

sign(x∗S∗) will nevertheless hold and optimality can still be proven. This yields the
Exact Optimality Check (EOC) summarized in Algorithm 3.1.

Theorem 3.4. If Algorithm 3.1 is successful then x̂ is an optimal solution for (P1).

Proof. If the point x̂ exists, it is obviously feasible. If ŵ satisfies A>S ŵ = sign(x̂S)

and (A>ŵ)j ∈ [−1, 1] for all j /∈ S (i.e., j such that x̂j = 0), we have A>ŵ ∈ ∂‖x̂‖1.
For Step 4, note that since b 6= 0, ‖h‖∞ = 1 for every h ∈ ∂‖x‖1 of any feasible
point x. The result hence follows from Lemma 3.1.

There are different ways to select the candidate support S in Step 1 of Algo-
rithm 3.1, the easiest being a hard-thresholding operation:

Skδ :=
{
j ∈ [n] : |xkj | > δ

}
(3.1)

for some δ ≥ 0. An alternative is based on `1-norm concentration: For a fixed
number c ∈ (0, 1], choose S as

Skc := arg min

{
|J | : J ⊆ [n],

∑
j∈J
|xkj | ≥ c ‖xk‖1

}
. (3.2)

Of course, (3.1) and (3.2) are in a sense equivalent: For each δ there exists a c such
that the two sets Skδ and Skc coincide, and vice versa. However, a straightforward
implementation of (3.2) requires sorting the |xkj |’s, yielding an O(n log n) running
time, whereas (3.1) can be implemented in O(n). On the other hand, (3.1) will only
become effective when the entries outside of the optimal support are small enough
already and if δ is not too large (to avoid cutting off entries in the optimal support).
In contrast, (3.2) is less dependent on the magnitudes of optimal nonzero entries.

62 Chapter 3. Solving Basis Pursuit

Algorithm 3.2 Heuristic Optimality Check (HOC) for (P1)
Input: matrix A, right hand side vector b 6= 0, vector x
1: deduce candidate (approx.) support S from x
2: compute approximate solution ŵ to A>Sw = sign(xS)
3: if ‖A>ŵ‖∞ ≈ 1 then
4: if x̂ exists with AS x̂S ≈ b and x̂j = 0 ∀ j /∈ S then
5: if (‖x̂‖1 + b>(−ŵ))/‖x̂‖1 ≈ 0 then
6: return “success”

3.1.2 Practical Considerations

EOC possibly involves a high computational cost when used as a frequently evalu-
ated stopping criterion in an `1-solver. We now describe how it can be turned into an
efficient and practically useful device, the Heuristic Optimality Check (HOC). The
result is Algorithm 3.2, which differs from Algorithm 3.1 in the following aspects.
In Step 2 of Algorithm 3.2, we wish to obtain a solution to A>Sw = sign(xS) (if

possible). To that end, we use the pseudo-inverse (A>S)† = AS(A>SAS)−1 to calculate
ŵ = (A>S)† sign(xS). In fact, we can avoid the explicit calculation of (A>S)† by
obtaining a solution v̂ to A>SAS v = sign(xS) via the method of conjugate gradients
(CG) [133] (cf. Section 1.3; see [197] for a convergence argument in case AS is
rank-deficient) and then taking ŵ = AS v̂.
We observed that if S equals the optimal support S∗ (or a superset of S∗ that

induces a full-rank submatrix AS), then approximating v̂ by computing only a few
CG iterations is enough to identify ŵ with ‖A>ŵ‖∞ ≈ 1 (here, as well as in all
other comparisons, we used a tolerance value of 10−6). Hence, the computational
overhead for HOC in case the support approximations are incorrect can be reduced
by limiting the number of CG iterations (we use at most 20). For this reason we
first compute ŵ and then x̂.
The next step is to check whether indeed ‖A>ŵ‖∞ ≈ 1. If this is the case, we

try to compute x̂ with x̂i = 0 for i /∈ S and AS x̂S = b. If x̂ exists, sign(x̂S)

might differ from sign(xS) (in particular, x̂S may contain zeros where xS does not),
and we cannot directly apply Lemma 3.1. Instead, we use strong duality, i.e., (cf.
Lemma 1.5)

min{ ‖x‖1 : Ax = b } = max{−b>y : ‖A>y‖∞ ≤ 1 },

and conclude that (x̂,−ŵ) forms an optimal primal-dual pair if the duality gap
‖x̂‖1− b>ŵ is (approximately) 0. The empirical results suggest that this optimality
check is robust: In our computational experiments, if HOC was successful, it always

3.1. Heuristic Optimality Check 63

obtained the (unique) optimal point (i.e., it made no false-positive “success” claims).
Let us now give a few remarks on the integration of HOC into `1-solvers. First, the

solver type should be taken into account when choosing a support approximation
scheme: In methods usually needing many (cheap) iterations, (3.2) offers a more
dynamic scheme, which—albeit being more expensive—may recognize the optimal
support far earlier than the hard thresholding scheme (3.1). Examples where (3.2)
proved very effective are ISAL1 and SPGL1, see Sections 4.6 and 3.2.5, respectively.
However, SPGL1 maintains a different type of approximate support anyway (called
“active set”), so suitable support approximations are immediately available and were
found to work just as well.
On the other hand, for algorithms with typically only relatively few (but ex-

pensive) iterations, (3.1) may be more adequate. An example where HOC using
this variant improved performance is the interior-point method `1-Magic, see Sec-
tion 3.2.3. In this case, we applied (3.1) with a different δ in each iteration, namely,
δk := ‖xk‖1/106. This scheme was also used (at constant iteration intervals) in
YALL1. Finally, in `1-Homotopy, we used the inherent support build by the algo-
rithm and additional hard-thresholding (3.1) with δ = 10−9.
To limit the overall computational effort in either case, we only execute HOC if the

(approximate) support S has changed. Since there always exists an optimal solution
with at most m nonzeros, we do not run HOC as long as |S| > m (naturally, if a
priori sparsity bounds were known, these could be used instead of m). Moreover, we
run HOC only every R iterations. The choice of this HOC frequency R is nontrivial:
Lower values for R increase the overhead induced by HOC, but may also lead to
early termination if HOC is successful. Thus, one can clearly expect a certain trade-
off between the overhead by running HOC and the speed-up it (hopefully) yields.
The goal should thus be to try to maximize HOC efficiency while at the same time
keeping the overhead low for at least those instances where HOC is not successful.
Since in second-order methods, iterations are relatively expensive already and

change the iterate point quite significantly, it makes sense to try HOC in every
iteration, i.e., to set R = 1. Thus, we did so for `1-Magic and SolveBP/PDCO. For
the first-order solvers, we benchmarked R by choosing bαmc (the nearest integer
no larger than αm), with α ∈ { 1

1000 ,
1

500 ,
1

200 ,
1

100 ,
1
50 ,

1
20 ,

1
10}, which led to the best

balance between speed-up and accuracy improvement (over our whole test set),
respectively. (We used fractions of the row number m for these tests since this is the
bounding dimension of the systems solved within HOC.) Thus, we set R to bm/500c
in `1-Homotopy, to bm/100c in SPGL1 and ISAL1, and to bm/10c in YALL1.
Note that for YALL1, we actually did not rigorously benchmark R, because the

HOC success rate is lower. Instead, we tried the same value that seemed best for
the other first-order methods with a typically high number of iterations (i.e., SPGL1

64 Chapter 3. Solving Basis Pursuit

and ISAL1), but found that very comparable results could be achieved using the
value that leads to the least-possible overhead among our choices of R. Thus, the
latter seemed preferable. Moreover, the choices were not entirely unambiguous: For
SPGL1, with R = bm/500c, HOC success occurred slightly more often, but the mean
running times were unsatisfactory. Similarly, ISAL1 with R = bm/200c solved more
instances but the running time improvement was notably less.

Remark 3.5. It should be noted that HOC can also be applied if A is only avail-
able as an implicit operator, as is often the case in large-scale practical applications.
Then, it may require considerable effort to extract columns indexed by some S ⊂ [n]

to form AS explicitly. However, this can be avoided by instead computing matrix-
vector products involving AS using A and an appropriate projection or embedding of
the respective vector: For x ∈ Rn, ASxS = APS(x), where PS(x) is the projection
onto the set of vectors in Rn whose support is a subset of, or equal to, S (i.e., the
projection operation keeps the entries of x indexed by S and sets all others to zero);
for z ∈ R|S|, ASz = A ES(z), where ES(z) ∈ Rn denotes the straightforward embed-
ding of z into the aforementioned set in Rn (i.e., (ES(z))S = z and (ES(z))[n]\S = 0).
Clearly, products involving A>S can be rewritten similarly as A>S y = (A>y)S and,
in particular, the CG method can still be utilized to solve the occurring equation
systems.

3.1.3 HOC Success Guarantees

The Basis Pursuit problem (P1) became important for CS in conjuncture with vari-
ous conditions that ensure `0-`1-equivalence, cf. Chapters 1 and 2. Thus, a question
of particular interest regarding HOC is whether it is possible to guarantee that it
will work correctly under such sparse recovery conditions (provided the optimal sup-
port was approximated sufficiently well). As we show below for the SRCs based on
the ERC and the mutual coherence (see Sections 2.2 and 2.1, respectively), this is
indeed sometimes possible.

Theorem 3.6. Let the support S∗ of an optimal solution x∗ of (P1) obey the
ERC (2.3). Then w∗ = −(A>S∗)

† sign(x∗S∗) is an optimal dual solution. Hence,
in exact arithmetic, HOC applied to (A, b, x), using ŵ = (A>S)† sign(xS), returns
“success” with x̂ = x∗, if sign(xS∗) = sign(x∗S∗) and either the support was correctly
estimated (S = S∗), or S contains S∗, obeys the ERC, and AS has full column rank.

3.2. Algorithms for Exact `1-Minimization 65

Proof. Let S = S∗ and sign(xS∗) = sign(x∗S∗). For an arbitrary j /∈ S∗, we have

|A>j (A>S∗)
† sign(x∗S∗)| ≤ ‖A>j (A>S∗)

†‖1 ‖sign(x∗S∗)‖∞ ≤ erc(A,S∗) < 1. (3.3)

Hence, w∗ = −(A>S∗)
† sign(x∗S∗) = −ŵ fulfills the optimality condition in Lemma 3.1.

Moreover, x̂ is feasible by construction and hence is optimal. Finally, x̂ equals x∗

since the ERC guarantees uniqueness of the solutions.
Now assume sign(xS∗) = sign(x∗S∗), S ⊃ S∗ with rank(AS) = |S| ≤ m, and that S

obeys the ERC. Then, analogously to (3.3), one can see that ŵ = (A>S)† sign(xS)

yields the dual feasible solution −ŵ. Since AS has full column rank, x̂ is the unique
solution to AS x̂S = b with zero entries at positions j /∈ S. Then x̂ must also have
zeros at j ∈ S\S∗ (since x∗ with support S∗ ⊂ S is primal feasible). Hence, since S∗

obeys the ERC, x̂ = x∗. Moreover, because a subgradient at x̂ can assume any value
in [−1, 1] for components in which x̂ is 0, A>ŵ ∈ ∂‖x̂‖1. Thus, as the duality gap
vanishes (‖x̂‖1 − b>ŵ = 0), HOC returns “success”.

Moreover, from the observation that sufficient sparsity with respect to mutual
coherence implies the ERC on all correspondingly small supports (see, e.g., [114,
Theorem 3]) we can immediately deduce the following result; cf. (2.2).

Corollary 3.7. Let µ(A) be the mutual coherence of A and let x∗ be an optimal
solution of (P1) with ‖x∗‖0 < 1

2

(
1 + 1

µ(A)

)
. If HOC is used with the correct sup-

port and exact calculations, then it returns “success” if and only if the outcome x̂
equals x∗.

Numerical results supporting the claimed usefulness of the HOC will be presented
later, in Section 3.4, where we turn to the computational comparison of `1-solvers.
(Moreover, extensions to the denoising problems (Pδ1) and (QPλ) are discussed in
Section 3.6.) Our Matlab code for HOC can be obtained from http://wwwopt.
mathematik.tu-darmstadt.de/spear.

3.2 Algorithms for Exact `1-Minimization

Given the great variety of `1-solvers, we had to restrict our attention to a certain
subset of these methods. The solvers were chosen according to the following guide-
lines.
• Only exact general-purpose solvers for `1-minimization (P1) are considered,

i.e., algorithms that are theoretically guaranteed to be capable of solving ar-

http://wwwopt.mathematik.tu-darmstadt.de/spear
http://wwwopt.mathematik.tu-darmstadt.de/spear

66 Chapter 3. Solving Basis Pursuit

bitrary instances of (P1) to optimality. This choice rules out probabilistic or
heuristical methods. It also excludes, for example, Orthogonal Matching Pur-
suit (OMP), since it only solves (P1) if the solution is sufficiently sparse (see,
e.g., [83, 207, 241]) and hence is not a general-purpose `1-solver.

• We restrict ourselves to algorithms with readily available implementations (all
but two in Matlab), and made our own code ISAL1 publicly accessible as well.

As a consequence, we leave out, e.g., NESTA [199, 19]. Although in theory
it can solve (P1) exactly, the implementation (provided by the authors of [19]
at http://www-stat.stanford.edu/~candes/nesta/) is designed for instances in
which the matrix A is a partial isometry (i.e., AA> = I). To be fair, the NESTA
implementation can handle general matrices, but then it (currently) requires a full
singular value decomposition of A; this adds a considerable amount of computa-
tional effort to the method which renders it noncompetitive with the other con-
sidered `1-solvers for larger instances. Moreover, we did not include the “Bregman
iteration” [262] (the available implementation uses an outdated subproblem solver)
or the linearized Bregman iteration [42], since it solves a slightly different problem
with an additional penalty term in the objective, see [261].
In the following, we provide an overview of the algorithms and their respective

implementations that we included in the computational comparison.

3.2.1 ISAL1

ISAL1 is a specialization of the general subgradient method ISA (which we develop
in Chapter 4) and is discussed in detail in Section 4.6. It employs dynamic step
sizes and adaptive approximate (instead of the usual exact) projections onto the
solution set of Ax = b to speed up iterations. Preliminary numerical experiments
in [175, Section 5.2] had shown that ISAL1 has the potential to be a successful
and competitive algorithm for CS sparse recovery via Basis Pursuit. The source
code is available at http://wwwopt.mathematik.tu-darmstadt.de/spear (below,
we used version 0.91).

Remark 3.8. It is worth mentioning that we also performed some experiments with
bundle methods (cf., e.g., [134]), which usually do not require extensive parameter
tuning as simpler subgradient methods do (including ISAL1). More precisely, we
implemented code for solving (P1) in the bundle framework extension to the GNU
Scientific Library [119, 139, 152] as well as the ConicBundle package [130]. Both
frameworks are C++/C-based and designed for unconstrained nonsmooth convex
optimization problems. Using a basis B, i.e., a subset of m column indices such that

http://www-stat.stanford.edu/~candes/nesta/
http://wwwopt.mathematik.tu-darmstadt.de/spear

3.2. Algorithms for Exact `1-Minimization 67

the (m ×m) matrix AB has full rank m, we can rewrite (P1) in such a form (see
also Lemma 3.11 on page 98):

min ‖xN‖1 + ‖A−1
B ANxN −A−1

B b‖1.

In our implementations, a basis B was obtained greedily by traversing the column
indices in increasing order and adding them to B if this increases the rank of the
associated submatrix, until |B| = m. (While this approach always works, it is
not clear if there is a more sensible way of choosing a basis to make the above
reformulation in some sense advantageous. However, it should be noted that every
optimal solution has a basis representation, due to the fact that (P1) can be seen as
a linear program.)
Despite many theoretical advantages of bundle methods over simple subgradient

methods, and therefore quite surprisingly, our experiments with the bundle codes
were very discouraging—often, the programs did not converge to a solution for hours,
on instances that ISAL1 managed to solve within seconds. Thus, we refrained from
further investigating bundle methods as means to tackle (P1).

3.2.2 The Homotopy Method

The homotopy method [204, 181] (see also [258]) employs auxiliary problems of the
form

min 1
2‖Ax− b‖

2
2 + λ ‖x‖1, (QPλ)

with a nonnegative parameter λ. More precisely, denoting by x∗λ a solution of (QPλ)
for some λ ≥ 0, it was shown that the solution path χ : λ 7→ x∗λ following the change
in λ is piecewise linear [204]. Moreover, for λ ≥ ‖A>b‖∞, we have x∗λ = 0, and for
λ → 0, x∗λ converges to a solution of (P1). The homotopy method starts with a
large λ (and x∗λ = 0) and then identifies the “breakpoints” of χ (which correspond
to changes in the support of the x∗λ’s). This yields a decreasing sequence of λ’s so
that x∗λ approaches the optimum as λ→ 0.
The homotopy method provably solves (P1), whereas its well-known variant LARS

[98] is only a heuristic for (P1), since it leaves out a critical algorithmic step (namely
that indices may leave the support of x∗λ again after they were added in some previous
iteration). However, if the solution is sufficiently sparse—i.e., in a favorable situation
from the Compressed Sensing perspective—both methods are equivalent (see [93])
and only need as many iterations as the (then unique) optimal solution of (P1)
has nonzero entries. (This is called the k-step solution property ; other sufficient
conditions besides a certain solution sparsity—for instance, as in (2.2) [93]—can

68 Chapter 3. Solving Basis Pursuit

also ensure this property, see [95].) Note that in the worst-case, the number of
iterations of the homotopy method is exponential in n (as for the simplex method
from linear programming with virtually all deterministic pivot rules, see, e.g., [155]),
reflecting the possible traversal of all sign-patterns [180].
We used the implementation `1-Homotopy from http://users.ece.gatech.

edu/~sasif/homotopy (version 1.0); cf. [9].

3.2.3 `1-Magic

The `1-Magic algorithm is a specialization of the primal-dual interior-point method
from [38] to a linear programming reformulation of (P1). The LP considered here is

min 1>u s.t. − u ≤ x ≤ u, Ax = b. (3.4)

Implicitly, u ≥ 0 holds, and the objective effectively minimizes the absolute val-
ues of x. Notably, and unlike typical interior-point methods known from linear
(or convex) programming, `1-Magic solves intermediate equation systems with a
conjugate gradient method, thereby avoiding some computationally expensive ma-
trix inversions. A more detailed description is provided within the user’s guide
of the `1-Magic implementation; we used version 1.11, which can be found at
http://www.l1-magic.org.

Remark 3.9. In fact, if `1-Magic is not supplied with functions returning matrix-
vector products with A or A> instead of A itself, the implementation does not
use CG but Matlab’s own linear equation solver linsolve. In particular, spe-
cific options are set to specialize linsolve to symmetric positive definite matrices.
However, preliminary tests showed that this sometimes leads to abnormal program
abortion (if the s.p.d. requirement is violated for numerical reasons). Similar nu-
merical trouble with this solver has been reported previously in [245]. Therefore, to
ensure that `1-Magic runs until regular termination on all test instances, we disabled
these special options. (Note that this does not change the underlying algorithm it-
self, only the way the implementation realizes it.) For sparse matrices A, where the
method can profit from using only products with A or A> (avoiding explicit con-
struction of dense matrices of the form A>SAS , S ∈ [n]), we provided `1-Magic with
corresponding matrix-vector product callback functions, so that CG is used. For
dense A, the `1-Magic variant with CG was even slower than the one with disabled
linsolve options.

http://users.ece.gatech.edu/~sasif/homotopy
http://users.ece.gatech.edu/~sasif/homotopy
http://www.l1-magic.org

3.2. Algorithms for Exact `1-Minimization 69

3.2.4 SolveBP/PDCO

The SolveBP function comes as a part of SparseLab (http://sparselab.stanford.
edu) and solves (P1) by applying PDCO (http://www.stanford.edu/group/SOL/
software/pdco.html), a primal-dual log-barrier method for convex objectives, to
the equivalent linear program

min 1>x+ + 1>x− s.t. Ax+ −Ax− = b, x+ ≥ 0, x− ≥ 0 (3.5)

arising from the standard split of variables x = x+ − x− with x+ := max{0, x} and
x−:= max{0,−x}. Like `1-Magic, SolveBP only needs callback functions for multi-
plication with A and A> to perform all necessary computations involving matrices.
We used version 2.1 of SparseLab.

3.2.5 SPGL1

The SPGL1 algorithm, introduced in [245], solves (P1) via a sequence of LASSO
problems with suitably chosen parameters τ , i.e.,

min ‖Ax− b‖2 s.t. ‖x‖1 ≤ τ. (LSτ)

More precisely, an inexact Newton-method is applied to find the value of τ for
which the solutions of (LSτ) and (P1) coincide; the LASSO subproblems are solved
efficiently by a specialization of the spectral projected gradient method (see [29]).
We used version 1.7 of SPGL1, available at http://www.cs.ubc.ca/labs/scl/

spgl1, which was proven to quickly compute (or approximate) solutions to (P1) in
various experiments already, see, e.g., [19, 245, 259].

3.2.6 YALL1

The YALL1 software package (http://yall1.blogs.rice.edu) contains an imple-
mentation of an alternating direction method (ADM) tailored to (P1). The paper
[259] describes both a primal-based ADM, which corresponds to an inexact aug-
mented Lagrangean algorithm for (P1), and a dual-based ADM. Two variants of the
latter algorithm are implemented in YALL1, with slightly different iterate updates
for the cases AA> = I and AA> 6= I. (While the implementation is arguably de-
signed for the first case, the second one is handled without severely limiting steps

http://sparselab.stanford.edu
http://sparselab.stanford.edu
http://www.stanford.edu/group/SOL/software/pdco.html
http://www.stanford.edu/group/SOL/software/pdco.html
http://www.cs.ubc.ca/labs/scl/spgl1
http://www.cs.ubc.ca/labs/scl/spgl1
http://yall1.blogs.rice.edu

70 Chapter 3. Solving Basis Pursuit

such as computing a full SVD as in the above-mentioned NESTA code.) We used
version 1.3 of YALL1.

3.2.7 CPLEX

As already pointed out, (P1) is essentially a linear program, see (3.4) and (3.5).
Thus, as a reference, we also solve (P1) with the dual simplex method of the com-
mercial LP solver Cplex [140] (version 12.4.0.1), applied to (3.5). (This form has
fewer primal constraints—excluding variable bounds—and therefore fewer dual vari-
ables than (3.4). Simplex-based LP solvers are expected to be more efficient in this
situation, cf., e.g., [143, Section 3.1]. We also experimented with the primal simplex
and barrier algorithms, but found the dual simplex approach to perform better.)
Note that while Cplex is accessed via a compiled C-library, all of the implementa-

tions listed above are Matlab programs (although the projections onto the `1-ball
in SPGL1 are performed by an external C-program, embedded in the Matlab code
via MEX-functions). Since (at user level) Matlab is an interpreted language, there
will be a certain bias to the advantage of Cplex in terms of running times. On the
other hand, we use a C-program that sets up the linear programs from the raw data
files via the SCIP LP-interface (version 3.0.0, available within the SCIP optimization
suite at http://scip.zib.de) and then calls the dual simplex algorithm of Cplex.
This LP construction step is included in the time measurements for Cplex.

3.2.8 SoPlex

Because Cplex is proprietary, it is also of interest to include a noncommercial
LP solver. Since for our Cplex wrapper code, we used the interface from SCIP,
we consider the solver SoPlex (version 1.7.0, cf. [257]) that comes with the SCIP
optimization suite. The C-program setting up the linear programs from data files is
the same one we used for Cplex; the LP construction is again included in the time
measurements, and, as with Cplex, we use the dual simplex method.

3.3 Test Set Description

To perform computational experiments, we built a test set consisting of 100 matri-
ces A of different types (random or structured matrices and concatenations thereof)

http://scip.zib.de

3.3. Test Set Description 71

Table 3.1. Matrix constructions and corresponding abbreviations.

name dim. matrix construction/type

BAND m×m band matrix with bandwidth 5, entries drawn uniformly at ran-
dom from (0, 1); the upper right and lower left corner of the
matrix are filled such that we obtain a circulant zero pattern

BIN m× n binary matrix, entries drawn uniformly from {0, 1}
BINB m×m binary full-rank square matrix, see BIN
BLROW m×m block diagonal matrix with a full row-block at the bottom; the

square diagonal blocks have dimension randomly chosen from
{5, . . . , 10}, the row-block spans 5 rows; the last diagonal block
may thus be smaller than 5× 5; entries are drawn uniformly at
random from (0, 1)

CONV m×m convolution matrix for a convolution with a Gaussian kernel
with variance 1/2 (truncated such that we obtain a banded ma-
trix with bandwidth 7)

GAUSS m×m entries are i.i.d. Gaussian N (0, 1)
HAAR m×m Haar matrix (requires m = 2r, r ∈ N)
HAD m×m Hadamard matrix (requires m = 2r, r ∈ N)
ID m×m identity matrix
INT m× n integer matrix, entries drawn uniformly at random from

{−10,−9, . . . , 9, 10}
PHAD m× n partial Hadamard matrix, consisting ofm randomly chosen rows

of the n× n HAD matrix
PRST m× n partial real sinusoid transform matrix, consisting ofm randomly

chosen rows of the n× n RST matrix
ROB m×m random orthonormal basis matrix
RSE m× n random sign ensemble, entries are drawn from a Bernoulli ±1

distribution
RST m×m real sinusoid (Fourier) transform matrix
TER m× n ternary matrix, entries are drawn uniformly from {−1, 0,+1}
URP m× n uniform random projection matrix, generated by taking m ran-

dom rows of an n× n random orthogonal matrix
USE m× n uniform spherical ensemble, columns are m-vectors uniformly

distributed on the sphere Sm−1

and four or six right hand side vectors b per matrix. The dimensions and specific
constructions of the matrices are summarized in Tables 3.1 and 3.2. After con-
struction, the columns of each matrix were normalized to unit Euclidean length.
Whenever a column appeared twice in a matrix, we randomly added single entries
in one such column and renormalized, until all columns were unique.

72 Chapter 3. Solving Basis Pursuit

Table 3.2. The m × n matrices in our test set: Matrices with m ≥ 2048 are sparse,
those with m ≤ 1024 are dense (but may contain sparse subdictionaries); concatenations
of matrix types are listed in square brackets in order of appearance.

m n matrix constructions

512 1024 BIN, INT, PHAD, PRST, RSE, TER, URP, USE, [HAAR,ID],
[HAAR,RST], [HAD,ID], [ROB,RST]

1536 BIN, INT, PHAD, PRST, RSE, TER, URP, USE,
[BAND,GAUSS,RST], [BINB,ID,HAD], [HAAR,ID,RST],
[HAAR,ROB,RST]

2048 BIN, INT, PHAD, PRST, RSE, TER, URP, USE,
[BAND,BINB,HAD,ID], [BAND,BLROW,HAD,ID],
[BINB,CONV,HAAR,ROB], [HAAR,ID,ROB,RST]

4096 [ID,HAAR,ROB,RST,BAND,BINB,BLROW,HAD]

1024 2048 as for 512× 1024
3072 as for 512× 1536
4096 as for 512× 2048
8192 as for 512× 4096

2048 4096 [BINB,BLROW], [BINB,CONV], [CONV,HAAR], [HAAR,ID]

6144 [BAND,BINB,HAAR], [BINB,HAAR,ID],
[BLROW,CONV,ID], [CONV,HAAR,ID]

8192 [BAND,BINB,CONV,ID], [BAND,BLROW,CONV,ID],
[BINB,BLROW,HAAR,ID], [BINB,CONV,HAAR,ID]

12288 [ID,HAAR,BAND,BINB,BLROW,CONV]

8192 16384 as for 2048× 4096
24576 as for 2048× 6144
32768 as for 2048× 8192
49152 [BAND,BINB,BLROW,CONV,HAAR,ID]

For each matrix A, we build two sets of right hand side vectors, from solution
vectors with high dynamic range3 and low dynamic range, respectively. For either
dynamic range, the first two vectors b were each constructed using a vector x whose
support satisfies the Exact Recovery Condition (ERC) [239] and thus is the unique
optimal solution to the instance of (P1) specified by matrix A and vector b := Ax

(cf. Section 2.2). More precisely, the supports of each such pair of vectors per matrix

3The dynamic range is the ratio of the largest and the smallest nonzero magnitudes of the vector
entries.

3.3. Test Set Description 73

are constructed as follows:
1. For each support size k (starting with k = 1), take a random k-element subset
S ⊆ [n], and check whether the ERC (2.3) holds, i.e., if

erc(A,S) = max
j /∈S
‖(A>SAS)−1A>SAj‖1 = max

j /∈S
‖A>j (A>S)†‖1 < 1.

If for the current k a support S satisfying (2.3) was found, k is increased by 1

and the process is repeated. We stop as soon as 25 trials for some k failed.
2. For the second vector, we tried to enlarge supports by adding an index j∗

to S that (for the current k) yields the maximum in erc(A,S): If the extended
support S ∪ {j∗} also satisfies the ERC, we update S to S ∪ {j∗}, increase k
by 1, and repeat this procedure as long as possible. When eventually no further
indices can be added without leading to a violation of the ERC, we continue
our search with random supports of size k = |S| + 1. For a given matrix, we
stop the search routine as soon as it failed for 25 random supports at some
size k or if a time limit of one day was exceeded.

For these two supports per matrix A and dynamic range type, we then define x by
fixing its nonzeros at the locations specified by the respective supports, with random
signs and magnitudes. For the high dynamic range (HDR) test set, the magnitudes
are 105y with the y’s chosen uniformly at random from (0, 1). For the low dynamic
range (LDR), we use entries drawn uniformly at random from (0, 1). (Note that this
does not necessarily guarantee vectors with high or low dynamic range; however, it
usually is the case: Over 80% of the HDR instance dynamic ranges exceed 104 and
more than 95% of the LDR instance dynamic ranges are below 102.) All respective
right hand sides are then obtained via b := Ax.
If the support of an optimal solution x∗ satisfies the ERC, x∗ is the unique opti-

mum of both (P1), and if ‖x∗‖0 is sufficiently small, also of (P0) (see [239]). Thus,
since most solutions constructed this way are rather sparse, most of the above-
described 400 instances likely represent a favorable situation in Compressed Sens-
ing, i.e., recoverability of sparse solutions via `1-minimization. As we wish to assess
solver performance outside of this so-called `0-`1-equivalence as well, we constructed
a third set of right hand sides for the first (smaller) 74 matrices as follows (for the
other matrices, the construction took unreasonably long):
Given A, we start with a support size k of m/10, rounded to the nearest in-

teger. Then, we take a random k-element subset S ⊆ {1, . . . , n} and create
a vector x (having support S) as described above (with HDR or LDR, respec-
tively). Next, we try to find a vector w such that A>w ∈ ∂‖x‖1, using the
alternating projections scheme included in L1TestPack (see [173]), available at
http://wwwopt.mathematik.tu-darmstadt.de/spear. If such a w was found, x

http://wwwopt.mathematik.tu-darmstadt.de/spear

74 Chapter 3. Solving Basis Pursuit

will be an optimal solution to the (P1) instance given by A and b := Ax; see
Lemma 3.1. Moreover, uniqueness can be verified by [125, Theorem 4.7]: Denoting
S′ := { i : |(A>w)i| = 1 }, x is the unique optimum if AS′ has full rank. If no w was
found, we repeat this procedure up to 5 times before decreasing k by 1. We iterate
the whole scheme until a unique solution was successfully created. Note that it is
still possible that a support created this way obeys the ERC; however, we verified
that this is not the case for any of the supports generated by this construction.
In total, this results in a test set of 548 instances—274 each with high (HDR)

or low (LDR) dynamic range solutions. Note that the repeated verifications of
the ERC required a significant amount of time, as did the calculations within the
second approach: Overall, the construction of the test set took more than a week of
computation time.
In general, a larger number of rows allows for larger supports, as can be seen

in Figure 3.1(a). Note also that for the larger instances, the number of nonzeros
generally has a larger variance.
Moreover, the test set exhibits both incoherent and highly coherent matrices. The

mutual coherence of a matrix A,

µ(A) = max
1≤j 6=k≤n

|A>j Ak|
‖Aj‖2 ‖Ak‖2

,

is an indicator of dependency among the matrix columns and hence, in a sense,
for the difficulty of corresponding instances. In general, small µ(A) yields better
recoverability of solutions to (P0) via `1-minimization and other approaches, cf.
Section 2.1. Moreover, we saw in Section 3.1.3 that HOC is successful under certain
incoherence conditions.
The distribution of the mutual coherences of our test matrices is depicted in

Figure 3.1(b). The 25 matrices with coherence larger than 0.95 are used in 114

of the 548 instances (57 each for the HDR and LDR parts); 258 instances (129

HDR, 129 LDR) have a matrix with µ < 0.25. The sparse matrices generally have
higher coherence (average 0.88, median 0.98) than the dense ones (average 0.40,
median 0.21).
We remark that none of our test instances fulfill the incoherence SRC from Theo-

rem 2.1; hence, `0-`1-equivalence is never guaranteed by means of the mutual coher-
ence. (However, as mentioned above, it may still offer an idea of the difficulty of an
instance by reflecting how “similar” the matrix columns are and hence, how hard to
distinguish their respective contributions in a minimum `1-norm linear combination
b = Ax could be.)

3.4. Computational Solver Comparison 75

512 1024 2048 8192
4

10

100

1000

Number of rows

N
u

m
b

e
r

o
f

n
o

n
z
e

ro
 e

n
tr

ie
s

(a) Number of nonzeros in the solutions plotted
(log-scale) against the number of matrix rows in
the resp. instances (black: HDR, blue: LDR).

512 1024 2048 8192
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of rows

M
u
tu

a
l
C

o
h
e
re

n
c
e

(b) Mutual coherences plotted against the resp.
number of matrix rows.

Figure 3.1. Test set properties: Solution sparsities and mutual coherences.

3.4 Computational Solver Comparison

In the following we present computational results for the `1-solvers and test set
described above. The calculations (single-thread, no parallelization) were performed
on a 64bit Ubuntu Linux system with a 3.6 GHz AMD FX-8150 eight-core CPU
(8MB cache) and 8GB RAM, using Matlab R2012a (7.14.0).
Since the solvers use a variety of different stopping criteria and tolerance parame-

ters, we decided to assess them in a “black box” manner. Thus, we keep the default
values of all algorithmic parameters. Required input parameters were chosen with
respect to the goal of an exact solution of (P1): The (main) tolerance parameter
in YALL1 was set to 10−6, and for `1-Homotopy we set the final regularization
parameter to 0 and the iteration limit to 10n (this was never reached in our ex-
periments). Moreover, `1-Magic does not include a default starting point (unlike
the other solvers), so we used the projection of the origin onto the constraint set
(i.e., x0 = A>(AA>)−1b); the additional computation times are included in the
corresponding solution times stated below.
To eliminate the possible influence of on-screen output on the running times, we

disabled any such output in all solvers, either by setting a corresponding option or
by removing the respective lines of code from the programs. Moreover, for each
instance we report the average time (geometric mean) over three runs.
In the following, we define an instance to be solved by an algorithm that produces

76 Chapter 3. Solving Basis Pursuit

solution x̄ if
‖x̄− x∗‖2 ≤ 10−6, (3.6)

where x∗ is the exact optimum (which we know from our test set construction). This
ensures | ‖x̄‖1 − ‖x∗‖1 | ≤ 10−6 and ‖Ax̄− b‖∞ ≤ ‖A‖2 10−6. Note that because of
the (perhaps less common) choice of considering the absolute difference ‖x̄− x∗‖2
instead of a relative criterion, by the latter inequality, (3.6) immediately also bounds
the feasibility violation. The spectral norms of the matrices in our test set are
around 18 on average (median circa 10, maximum about 64); empirically, evaluating
the results of all solvers over the whole test set, the quotients ‖Ax̄− b‖∞/‖x̄− x∗‖2
are usually even smaller (very often below 1, all below 5, with a single exception at
roughly 9). Thus, for the upcoming results the “solved” status implies that feasibility
violation is at most of the order 10−6.
Due to the different natures of the diverse stopping criteria and corresponding

parameters employed by the solvers, it cannot be expected that all resulting solutions
will satisfy the above condition. This must of course be taken into account when
evaluating the computational results. To that end, we define a solution x̄ produced
by an algorithm to be acceptable if

10−6 < ‖x̄− x∗‖2 ≤ 10−1.

Note that this definition excludes the solutions of instances that are considered
solved. If the upper bound is violated, we consider the obtained point unacceptable.
It should be noted that we did not distinguish between the various possible reasons

why an algorithm terminated. In particular, the returned point may be the last
iterate if an algorithm stopped due to numerical problems. Therefore, should an
unacceptable solution be obtained, it is not necessarily implied that the algorithm
claims this point to be optimal (within its own tolerances).

3.4.1 Numerical Results

For all eight solvers we illustrate the performance on the whole test set of 548

instances in Figures 3.3–3.9, in which we plot running time (in seconds) against
distance to the (unique) optimum. For clarity, the results for the high and low
dynamic range test set parts (HDR, LDR) are shown separately. Moreover, for
the solvers into which we integrated HOC (i.e., `1-Homotopy, ISAL1, `1-Magic,
SolveBP/PDCO, SPGL1, and YALL1), we present two figures each per different
test set part, one without and one with HOC. The different construction methods of

3.4. Computational Solver Comparison 77

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.2. Results for ISAL1. The plots show running times versus distance to optimum
in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based instances,
respectively.

the instances (ERC-based, non-ERC-based) are distinguishable by different colors
in the plots. Note also that all figures are in double-logarithmic scale, and that
they share the same axes limits (thus, they are directly comparable). Furthermore,
it is worth mentioning that the general appearance, or “shape”, of the point clouds
hardly changes if we plot relative instead of absolute distances (and adapt the scale
appropriately). Thus, the results can be interpreted in some sense independently of
the choice of distance criterion.

78 Chapter 3. Solving Basis Pursuit

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.3. Results for `1-Homotopy. The plots show running times versus distance to
optimum in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based
instances, respectively.

3.4. Computational Solver Comparison 79

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.4. Results for `1-Magic. The plots show running times versus distance to
optimum in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based
instances, respectively.

80 Chapter 3. Solving Basis Pursuit

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.5. Results for SolveBP/PDCO. The plots show running times versus distance
to optimum in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based
instances, respectively.

3.4. Computational Solver Comparison 81

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.6. Results for SPGL1. The plots show running times versus distance to optimum
in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based instances,
respectively.

82 Chapter 3. Solving Basis Pursuit

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.7. Results for YALL1. The plots show running times versus distance to optimum
in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based instances,
respectively.

3.4. Computational Solver Comparison 83

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set (without HOC)

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) LDR test set (without HOC)

Figure 3.8. Results for Cplex. The plot shows running times versus distance to optimum
in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based instances,
respectively.

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set (without HOC)

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) LDR test set (without HOC)

Figure 3.9. Results for SoPlex. The plot shows running times versus distance to optimum
in loglog scale. Black and blue dots mark the ERC-based and non-ERC-based instances,
respectively.

84 Chapter 3. Solving Basis Pursuit

Table 3.3. Percentage of instances yielding different solutions statuses, per solver. (Cplex
and SoPlex both reached “solved” for every instance.)

% solved % acceptable % unacceptable

Solver HDR LDR all HDR LDR all HDR LDR all

ISAL1 78.1 92.3 85.2 11.3 7.3 9.3 10.6 0.4 5.5
ISAL1 (HOC) 91.2 96.7 94.0 3.6 2.9 3.3 5.1 0.4 2.7
SPGL1 0.0 0.0 0.0 82.5 90.1 86.3 17.5 9.9 13.7
SPGL1 (HOC) 69.0 72.6 70.8 13.9 17.9 15.9 17.2 9.5 13.3
YALL1 0.0 0.0 0.0 1.5 78.1 39.8 98.5 21.9 60.2
YALL1 (HOC) 5.1 64.2 34.7 0.0 18.6 9.3 94.9 17.2 56.0
`1-Hom. 65.3 83.6 74.5 19.0 6.6 12.8 15.0 9.5 12.2
`1-Hom. (HOC) 92.3 97.8 95.1 5.8 0.4 3.1 1.8 1.8 1.8
SolveBP 0.0 0.0 0.0 85.0 99.3 92.2 15.0 0.7 7.8
SolveBP (HOC) 70.1 0.0 35.0 14.6 99.3 56.9 15.3 0.7 8.0
`1-Magic 0.0 15.3 7.7 53.3 82.8 68.1 46.7 1.8 24.3
`1-Magic (HOC) 62.0 76.6 69.3 5.1 21.5 13.3 32.8 1.8 17.3

Let us start by looking at the results without HOC; the changes induced by
integrating HOC into the solvers are discussed in Section 3.4.2 below.
Firstly, we observe that only Cplex and SoPlex are able to solve all instances

with respect to the above measure (3.6). It is remarkable that the dual simplex
methods from Cplex and SoPlex perform that well even for the dense instances,
since the codes are optimized for sparse instances. Moreover, it should be noted
that the time taken by Cplex or SoPlex to actually solve an instance accounts for
a significantly smaller portion of the total time for instances with sparse matrices
(roughly 74% on average, median 74%, for both Cplex and SoPlex) as opposed to
dense ones (circa 90% (Cplex) or 89% (SoPlex) on average, median 96% for both).
The overhead arises in the interface to the respective solver and can possibly be
improved; however, note that all instances with sparse matrices were solved in well
below one second by both solvers.
A large part of the instances was also solved by ISAL1 and, to a slightly lesser ex-

tent, by `1-Homotopy. SPGL1 and SolveBP/PDCO produce acceptable solutions for
a majority of instances (but solve none), in accordance with their respective default
accuracy settings. The two interior-point solvers, `1-Magic and SolveBP/PDCO,
behave quite differently: Unlike the latter, `1-Magic reaches acceptable solutions
only for about half the HDR instances, but solves several LDR instances. Similarly,
YALL1 hardly produces any acceptable solution for the HDR test set part and only
for about three quarters of the LDR instances. (We also ran YALL1 with input tol-
erance parameter 10−12 on our test set, but the results were only marginally better

3.4. Computational Solver Comparison 85

w.r.t. solution quality; the runtimes naturally increased.)
In fact, note that all solvers can handle the LDR instances better than the HDR

instances: The number of solved or acceptable instances is notably higher on the
LDR test set part, see Table 3.3.
Looking also at the running times (for now, still without HOC), we immediately

observe from the figures that SPGL1 and YALL1 are relatively fast, but all other
solvers are somewhat comparable in speed, with SolveBP/PDCO and ISAL1 being
on the slower end of the spectrum. However, such a cursory analysis is hardly fair,
given the different solution accuracy demands the solvers try to satisfy. By default,
ISAL1, `1-Homotopy, Cplex, and SoPlex aim at high accuracy (i.e., “solved” sta-
tus), while the other solvers are content with “acceptable” solutions. Thus, we look
at these two solver groups separately and compare their running times on the sub-
sets of instances which all four solvers in the respective group solved, or for which
they reached at least acceptable solutions, respectively, see Tables 3.4 and 3.5. Since
YALL1 performed extremely poorly on the HDR instances (see Table 3.3), we ex-
cluded it from Table 3.5 to avoid a strong bias towards LDR instances in the stated
running times.
From these tables, we observe that for the smaller instances (having up to 4096

columns), SPGL1 is clearly the fastest algorithm to obtain acceptable solutions;
for the large-scale instances (almost all of which have sparse matrices), `1-Magic
performs better than SPGL1, but the LP codes Cplex and SoPlex are much faster
still and actually solve all instances. For solving the smaller instances to high
accuracy, however, one can do better than these two: While Cplex still has the
lowest average running times (cf. the rows corresponding to n ≤ 4096 in Table 3.4),
it often yields high maximum times for the listed instance groups; SoPlex and ISAL1
seem good noncommercial alternatives: SoPlex—like Cplex—solves all instances,
and ISAL1 solves many, typically requiring lower running time than SoPlex and `1-
Homotopy (and smaller maximum times even than Cplex). Moreover, `1-Homotopy
is much faster than ISAL1 on large-scale problems, but solves considerably less
instances. Similarly, SolveBP/PDCO produces the most acceptable solutions but is
much slower than the other algorithms in Table 3.5. Finally, it should be mentioned
that YALL1 is comparable to SPGL1 on the LDR test set part, although it achieved
acceptable solutions fewer times and is slightly slower.
We note in particular that `1-Homotopy exhibits moderate to large running times

and produces over 12% unacceptable solutions. This is perhaps surprising, since
many instances have very sparse solutions, so one could expect the k-step solution
property (cf. [93]) to hold; then, `1-Homotopy should obtain the true optimum very
quickly. We will therefore discuss the behavior of `1-Homotopy, as well as possible
improvements of the implementation at hand, in more detail in Section 3.4.3 below.

86 Chapter 3. Solving Basis Pursuit

Table 3.4. Geometric means of the running times (in seconds) of the algorithms (without
HOC) aiming at “solved” solution status, for instances that all four could solve, grouped
by number n of columns.

n used/of `1-Hom. ISAL1 Cplex SoPlex

1024 56/72 solved 63 64 72 72
avg. t 1.70 1.35 0.37 0.89
max t 6.18 2.93 2.56 13.02

1536 60/72 solved 66 66 72 72
avg. t 2.20 1.63 0.75 1.94
max t 7.06 5.09 5.56 41.76

2048 101/144 solved 120 121 144 144
avg. t 3.42 3.26 1.59 4.53
max t 50.41 14.40 19.17 89.95

3072 53/72 solved 60 61 72 72
avg. t 6.75 6.72 5.26 13.87
max t 55.17 25.04 44.43 150.00

4096 64/94 solved 73 82 94 94
avg. t 6.32 9.98 3.22 7.96
max t 74.30 70.82 126.96 303.95

6144 5/16 solved 6 12 16 16
avg. t 2.02 31.61 0.03 0.04
max t 19.95 37.27 0.03 0.05

8192 6/22 solved 6 16 22 22
avg. t 3.08 63.32 0.27 0.39
max t 19.22 73.11 2.13 2.87

12288 2/4 solved 2 4 4 4
avg. t 1.48 123.14 0.05 0.09
max t 2.03 147.76 0.05 0.10

16384 6/16 solved 6 14 16 16
avg. t 18.73 194.33 0.21 0.32
max t 1204.31 237.66 0.29 0.42

24576 1/16 solved 1 13 16 16
avg. t 5.86 460.46 0.30 0.44
max t 5.86 460.46 0.30 0.44

32768 3/16 solved 4 14 16 16
avg. t 5.96 857.45 0.36 0.57
max t 7.45 900.03 0.36 0.57

49152 0/4 solved 1 0 4 4
avg. t – – – –
max t – – – –

3.4. Computational Solver Comparison 87

Table 3.5. Geometric means of the running times (in seconds) of the algorithms (without
HOC) aiming at “acceptable” solution status, for instances that all three could reach at
least acceptable solutions, grouped by number n of columns.

n used/of `1-Magic SPGL1 SolveBP

1024 63/72 ≤ acceptable 65 68 72
avg. t 1.52 0.16 1.28
max t 2.42 1.63 2.32

1536 58/72 ≤ acceptable 62 68 67
avg. t 2.27 0.23 1.76
max t 3.94 1.49 3.80

2048 112/144 ≤ acceptable 122 131 134
avg. t 5.07 0.38 4.07
max t 17.64 6.03 17.44

3072 54/72 ≤ acceptable 57 66 61
avg. t 11.96 0.70 9.40
max t 29.43 4.68 28.21

4096 57/94 ≤ acceptable 64 81 81
avg. t 9.42 0.96 9.03
max t 37.00 10.82 35.12

6144 7/16 ≤ acceptable 8 12 16
avg. t 0.37 0.75 1.64
max t 1.12 2.94 5.77

8192 9/22 ≤ acceptable 13 12 21
avg. t 5.16 3.11 8.68
max t 79.64 12.86 76.06

12288 1/4 ≤ acceptable 2 2 4
avg. t 0.84 1.99 5.13
max t 0.84 1.99 5.13

16384 8/16 ≤ acceptable 8 14 16
avg. t 2.82 2.40 64.57
max t 9.20 23.01 552.15

24576 4/16 ≤ acceptable 7 8 15
avg. t 2.49 3.76 297.78
max t 5.72 5.00 485.01

32768 6/16 ≤ acceptable 6 9 15
avg. t 6.63 7.26 113.33
max t 29.88 33.77 397.44

49152 1/4 ≤ acceptable 1 2 3
avg. t 7.39 8.89 310.30
max t 7.39 8.89 310.30

88 Chapter 3. Solving Basis Pursuit

Additionally, the Tables 3.4 and 3.5 show that the running times generally increase
with the number of columns, i.e., with the dimension of the solution vector. Thus,
the points on the right in the point clouds in Figures 3.3–3.9 usually belong to larger
instances. (Note that this also explains why the non-ERC-based instances appear
relatively central in many plots.)
Finally, it should also be noted that all solvers except Cplex and SoPlex would

benefit from fast matrix-vector multiplications (e.g., for the real sinusoid transform
RST). This is especially true for SPGL1, YALL1, and ISAL1, which use only a small
number of matrix-vector multiplications per iteration.
As we will discuss in the next part, the picture we get for the running time

and solution accuracy behavior changes quite significantly when we reconsider the
algorithms, this time with HOC integrated into them.

3.4.2 Impact of the Heuristic Optimality Check

The benefit of HOC is clearly visible for ISAL1, `1-Homotopy, `1-Magic,
SolveBP/PDCO, and SPGL1: In all cases the point clouds “moved down left”,
although the speed-up is less distinct for the interior-point solvers `1-Magic and
SolveBP/PDCO than for the other three (first-order) solvers. Moreover, it becomes
apparent from Table 3.3 and from comparing the two pairs of plots ((a)/(b) and
(c)/(d)) in Figures 3.2–3.6, respectively, that by using HOC, one can often dras-
tically improve the accuracy of the obtained solutions, especially on instances for
which only acceptable solutions were reached without HOC (i.e., solutions corre-
sponding to markers lying between the horizontal dashed lines). A specific example
is shown in Figure 3.10, where one clearly sees how HOC allows for jumping to
the optimum (up to numerical precision). Note that the slightly better accuracy of
the solution produced by HOC in ISAL1 (left picture) is due to numerical issues;
here, HOC successfully computed x∗ (to machine precision) from an overestimated
support.
An exception to the overall success of integrating HOC is YALL1, cf. Figure 3.7.

Here, the performance only improved for very few HDR instances but for about 64%
of the LDR instances, see Table 3.3. In YALL1, the (approximate) supports typi-
cally vary often and significantly, implying that an early identification of the optimal
support is often impossible. Moreover, YALL1 produces a notable amount of ac-
ceptable solutions only on the LDR test set part; as we already observed, HOC
seems particularly successful in improving solutions from that region. Thus, includ-
ing HOC in YALL1 is relatively often unsuccessful (at least for HDR instances), but
of course introduces overhead.

3.4. Computational Solver Comparison 89

0 480 2810
10

−12

10
−6

10
0

10
6

Iteration k

0 430 659
10

−12

10
−6

10
0

10
6

Iteration k

0 18 20
10

−12

10
−6

10
0

10
6

Iteration k

Figure 3.10. Impact of HOC in the solvers ISAL1 (left picture), SPGL1 (middle), and `1-
Magic (right) for the HDR instance consisting of the 1024×8192matrix A and b constructed
with the second ERC-based variant. The curves trace the distance of the current iterates to
the known optimum (‖xk − x∗‖2, black) and the current feasibility violation (‖Axk − b‖∞,
blue) per iteration k, in logarithmic scale. The dots indicate the corresponding measures
after HOC was successful, at the corresponding iteration.

Further details on the impact of HOC can be found in Table 3.6: The first row
group shows how many of the instances (with respect to the whole test set, HDR
only, or LDR only, respectively) that were solved by the original algorithm were
solved faster when employing HOC. The second group of rows gives the numbers of
instances that were solved only when HOC was used. It is important to note that
in most cases listed in this second row, the variant employing HOC was not only
able to solve the problem, but also required less time than the unmodified algorithm
needed to reach an inferior solution. For instance, of the 380 instances that `1-Magic
with HOC could solve, 379 times the early termination due to HOC success led to
a smaller running time compared to `1-Magic without HOC (which only reached
solved status on 42 instances).
The next two row groups of Table 3.6 give the percentages of improvements (in

the sense defined by the first two row groups) achievable by including HOC, with re-
spect to the two methods used for constructing the corresponding instances, cf. Sec-
tion 3.3. Note that the HOC success rate is considerably higher for the ERC-based
test set than for the non-ERC part; a theoretical explanation for this was provided
by Theorem 3.6 in Section 3.1.3, see also Remark 3.10 at the end of this subsection.
The fifth group of three rows shows the average relative speed-up that HOC

yields for each solver, over the whole test set or the HDR and LDR parts separately,
respectively. The average relative speed-up is defined as

1

instances

∑
i

t
w/o HOC
i − tw/ HOC

i

t
w/o HOC
i

;

90 Chapter 3. Solving Basis Pursuit

Table 3.6. Impact of HOC in the solvers.

`1-Hom. ISAL1 `1-Magic SPGL1 SolveBP YALL1

solved faster 329/408 386/467 41/42 0/0 0/0 0/0
(HDR) (148/179) (186/214) (0/0) (0/0) (0/0) (0/0)
(LDR) (181/229) (200/253) (41/42) (0/0) (0/0) (0/0)

solved extra 113 49 338 388 192 190
(HDR) (74) (37) (170) (189) (192) (14)
(LDR) (39) (12) (168) (199) (0) (176)

% imp. ERC 99.5 98.2 85.2 87.8 45.0 44.8
(HDR) (99.5) (99.5) (78.0) (87.0) (90.0) (7.0)
(LDR) (99.5) (97.0) (92.5) (88.5) (0.0) (82.5)

% imp. non-ERC 29.7 28.4 25.7 25.0 8.1 7.4
(HDR) (31.1) (32.4) (18.9) (20.3) (16.2) (0.0)
(LDR) (28.4) (24.3) (32.4) (29.7) (0.0) (14.9)

% avg. rel. speed-up 67.9 57.1 10.4 15.4 4.8 −25.8
(HDR) (68.9) (58.8) (8.6) (8.7) (11.0) (−50.9)
(LDR) (67.0) (55.3) (12.1) (22.0) (−1.5) (−0.8)

faster 444 438 413 365 240 141
% speed-up if faster 84.6 71.9 14.0 24.1 12.8 50.3

slower 104 110 135 183 308 407
% overhead if slower 2.9 1.8 0.8 1.9 1.4 26.3

it therefore incorporates the running time changes induced by HOC in both direc-
tions, i.e., not only speed-ups are considered but also overheads. The last four rows
in Table 3.6 yield the number of instances (out of 548 in the whole test set) for which
the algorithm variant with HOC was faster than the one without it, and the relative
speed-up obtained on these instances, followed by the number of instances where
HOC slowed down the respective solver and the corresponding relative overhead on
those instances.
From Table 3.6, we see that large parts of instances that a solver could also

solve without HOC are solved faster when HOC is employed; the actual speed-ups
on instances where the variant with HOC was faster are most impressive for `1-
Homotopy (about 85% faster) and ISAL1 (about 72%). As already observed earlier
from Figures 3.4 and 3.5, the speed-ups are not as pronounced for the interior-
point methods `1-Magic and SolveBP/PDCO, but still quite significant. SPGL1
and YALL1 are very fast without HOC already, so it does not come as a surprise
that the speed-up rate is not as high as for the other first-order methods. In fact,
for YALL1, HOC is mostly ineffective on the HDR test set part and apparently also
too often slows it down on the LDR part, which results in a “negative speed-up”,
i.e., an overhead. This can also be observed for SolveBP/PDCO on the LDR part:

3.4. Computational Solver Comparison 91

On average, HOC introduces a relative overhead of 1.5% here, while on the HDR
instances there is a relative speed-up of 11%, which combines to a total average
relative speed-up of almost 5%. Except for YALL1, the last two rows of the table
show that the actual overheads occurring in case HOC slows down the algorithm
are rather small (between 0.8 and 2.9%). Combined with the much higher speed-up
rates on instances where HOC decreased the running time, we end up with average
relative speed-ups for each solver (except YALL1) that are quite substantial.
It is somewhat surprising that in SolveBP/PDCO, HOC is not once successful on

the LDR test set part. Possibly, a different way to obtain the approximate supports
used for HOC could resolve this issue, which did not seem to be a problem in any
other solver. Moreover, it is worth mentioning that SPGL1 with HOC frequency
R = bm/500c could solve 16 more instances (mostly from the non-ERC-based test set
parts) than with R = bm/100c; however, then, we end up with a relative overhead of
almost 30% as opposed to the average relative speed-up of 15.4% otherwise. Since
spending more time can naturally lead to more accurate solutions (without even
employing HOC), the choice R = bm/100c seemed more sensible to us.
Since with HOC, many algorithms reach “solved” solution status quite often, we

should reconsider which algorithm is “the best” (a tag that could arguably have been
affixed to Cplex or SoPlex by the preceding discussion in Section 3.4.1). To this end,
we again compare running times on instances which all solvers could now solve, see
Table 3.7. Here, we leave out SolveBP/PDCO and YALL1 due to their problems
with LDR or HDR instances, respectively. Regarding the others, we know from
Table 3.3 that with HOC, SPGL1 and `1-Magic solve about 70% of all instances,
`1-Homotopy about 95%, and ISAL1 94%. (Recall that SoPlex and Cplex both
solve all instances anyway.)
The results summarized in Table 3.7 show that by including HOC, both `1-

Homotopy and SPGL1 are now clearly faster than ISAL1, which—although it also
benefits from a large speed-up due to HOC—is the slowest solver on the large-scale
(sparse-matrix) instances with 6144 columns or more. On the smaller instances (up
to column size 4096), `1-Homotopy, SPGL1, and ISAL1 all beat the LP solvers—even
the commercial Cplex—in terms of the average running time. The interior-point
code `1-Magic is not competitive: On the small instances, all other codes are much
faster4, and while the code clearly works better on sparse instances (i.e., the larger-
scale ones), it still is the second-worst freely available algorithm considered here,
both in terms of running time and number of solved instances. Similarly, although
still significantly faster than `1-Magic and SoPlex (and in some cases also Cplex),
ISAL1 is always slower on the smaller instances than `1-Homotopy and SPGL1.
4The runtime differences are large enough to expect that `1-Magic will not “catch up” even with
the linsolve options enabled (provided it then terminates with a solution and does not abort
with an error, cf. Remark 3.9), though we have not tested this.

92 Chapter 3. Solving Basis Pursuit

Table 3.7. Geometric means of the running times (in seconds) of selected algorithms with
HOC, for instances that all could solve, grouped by number n of columns. (Cplex and
SoPlex do not employ HOC but still solve all instances.)

n used/of `1-Hom. ISAL1 `1-Magic SPGL1 Cplex SoPlex

1024 61/72 solved 71 70 61 62 72 72
avg. t 0.07 0.35 1.31 0.12 0.34 0.78
max t 1.16 1.81 2.01 1.08 2.56 15.66

1536 51/72 solved 69 68 54 53 72 72
avg. t 0.05 0.44 2.06 0.13 0.58 1.17
max t 1.20 1.35 3.10 1.17 4.55 34.49

2048 103/144 solved 139 134 108 107 144 144
avg. t 0.11 1.02 5.03 0.26 1.36 3.27
max t 1.26 2.59 14.69 4.09 17.24 90.14

3072 48/72 solved 65 65 52 50 72 72
avg. t 0.19 2.36 14.84 0.52 3.95 9.33
max t 1.69 12.26 26.67 6.60 43.36 113.40

4096 59/94 solved 87 88 64 65 94 94
avg. t 0.18 3.48 9.42 0.58 1.64 3.54
max t 1.01 30.98 30.03 7.92 60.89 204.03

6144 8/16 solved 16 15 8 11 16 16
avg. t 0.07 6.90 0.23 0.36 0.02 0.03
max t 0.44 25.63 0.82 0.97 0.03 0.05

8192 9/22 solved 20 20 10 11 22 22
avg. t 0.15 15.07 4.07 1.17 0.21 0.31
max t 0.42 67.41 72.54 8.77 2.17 2.96

12288 0/4 solved 4 4 2 1 4 4
avg. t – – – – – –
max t – – – – – –

16384 5/16 solved 14 16 8 11 16 16
avg. t 0.41 21.41 1.09 0.59 0.12 0.20
max t 1.85 32.05 6.96 1.59 0.26 0.40

24576 6/16 solved 16 16 7 8 16 16
avg. t 0.29 68.31 1.43 2.79 0.17 0.27
max t 0.35 185.28 4.24 6.18 0.31 0.46

32768 4/16 solved 16 15 5 7 16 16
avg. t 0.63 122.13 4.53 3.85 0.35 0.56
max t 1.75 135.06 8.42 8.16 0.36 0.56

49152 1/4 solved 4 4 1 2 4 4
avg. t 0.65 220.72 6.27 4.79 0.44 0.68
max t 0.65 220.72 6.27 4.79 0.44 0.68

From the way the running times vary with the number of columns, Table 3.7 also
shows that the running time of `1-Homotopy (with HOC) mostly seems to depend
on the solution sparsity; the increase with larger column number is not nearly as

3.4. Computational Solver Comparison 93

significant as for the other solvers. Clearly, this is an advantage for the Compressed
Sensing scenario, where `1-minimization is employed to recover sparse solutions to
(large-scale) systems Ax = b.
To summarize, for the test instances with at most 8192 columns, `1-Homotopy

with HOC integrated into it solves almost all instances, and does so much faster
than all noncommercial alternatives and, in most cases, also faster than Cplex. On
the larger instances, which mostly have sparse matrices, Cplex solves all instances
and is the fastest algorithm. However, both SoPlex and `1-Homotopy (with HOC)
are only fractions of a second slower, solving all or almost all instances, respectively,
and therefore offer the best freely available codes in this regime.
It is noteworthy that this situation does not change when we only ask for accept-

able solutions: `1-Homotopy with HOC is faster than all other solvers for instances
up to column size 8192 (the next fastest are—usually, but not always—SPGL1 and
ISAL1); beyond that size, Cplex is fastest, followed by SoPlex and then again
`1-Homotopy with HOC. Both `1-Magic and SolveBP/PDCO turn out to not be
competitive even with HOC (although `1-Magic ends up in fourth place on the
large-scale instances).

Remark 3.10. As mentioned earlier, the observation that HOC is more often suc-
cessful on instances constructed using the ERC can be explained by Theorem 3.6.
Moreover, note that the ERC guarantees the existence of ε > 0 such that the mag-
nitude of (A>w∗)j (recall w∗ = −(A>S∗)

† sign(x∗S∗)) is smaller than (1 − ε) for j
outside of the support of x∗, and hence, some inaccuracy in the calculation of w∗

is tolerated. Generally however, there is no guarantee that w∗ yields the desired
properties. Therefore, the approach taken by HOC (i.e., working with ŵ ≈ w∗)
does not need to be effective, as is reflected by the lower success rates on the second
part of the test set, where the ERC does not hold. Nevertheless, even without a
theoretical justification of the choice of ŵ, HOC still works for a significant number
of these instances as well.

3.4.3 The Behavior of `1-Homotopy

As mentioned above, the unconvincing behavior of `1-Homotopy is somewhat unex-
pected. One reason could be a large coherence among dictionary columns leading
to (many) more breakpoints encountered along the homotopy solution path. How-
ever, `1-Homotopy produced unacceptable solutions for only 39 of the 114 instances
with highly coherent dictionaries (HDR: 26/57, LDR: 13/57), while 52 of the re-
maining 75 instances (HDR: 20/31, LDR: 32/44) were solved (in the sense defined

94 Chapter 3. Solving Basis Pursuit

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.11. Results for `1-Homotopy, modified to terminate as soon as a problem is
recognized. The plots show running times versus distance to optimum in loglog scale.
Black and blue dots mark the ERC-based and non-ERC-based instances, respectively.

by (3.6)). Thus, this intuitive explanation actually cannot be verified.
The implementation identifies two problematic cases (“sign mismatches” and “de-

generacy”), but ignores them for up to 500 more iterations. Terminating the algo-
rithm as soon as one of these cases occurs yields the results depicted in Figure 3.11.
Compared to Figure 3.3, the improvement is clear, even without incorporating HOC
(now only 13 of the 114 highly coherent instances yield unacceptable solutions (HDR:
11, LDR: 2), and 101 (HDR: 46, LDR: 55) are solved.) Nevertheless, the general
impression remains the same: One would expect the homotopy method to perform
better and, in particular, not to deliver unacceptable results. Thus, we suspect

3.4. Computational Solver Comparison 95

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(a) HDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(b) HDR test set, with HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(c) LDR test set, without HOC

10
−2

10
−1

10
0

10
1

10
2

10
−12

10
−6

10
0

10
6

Running Times [sec]

‖x̄
−
x
∗
‖ 2

(d) LDR test set, with HOC

Figure 3.12. Results for `1-Homotopy with final regularization parameter 10−9. The
plots show running times versus distance to optimum in loglog scale. Black and blue dots
mark the ERC-based and non-ERC-based instances, respectively.

numerical issues to be the reason for this unexpectedly bad performance.
Indeed, theory only guarantees convergence of the homotopy method to a BP

solution if the final regularization parameter is set to 0. However, if we use 10−9

instead of 0, we get a completely different picture, see Figure 3.12 and compare
with Figures 3.3 and 3.11. It turns out that `1-Homotopy with final regularization
parameter 10−9—although technically not an exact `1-solver—solves all instances
with high accuracy and is also the fastest algorithm in the vast majority of cases. It
is noteworthy that, in this case, the final results are actually worse if we terminate as
soon as the implementation detects a problematic case. Moreover, HOC apparently

96 Chapter 3. Solving Basis Pursuit

does not significantly improve the general performance and does not convincingly
justify its induced running time overhead, although it is small.

3.4.4 Conclusions

Our experiments do not indicate a clear winner among the various exact `1-solvers.
While Cplex and SoPlex were the only ones to solve all instances to within dis-
tance 10−6 of the true optimum, they have the potential drawback of requiring the
matrices in explicit form, while all other algorithms could also handle matrices given
implicitly via matrix-vector product oracles. Moreover, Cplex is proprietary, while
all other implementations are freely available.
Currently, only our ISAL1 implementation contains the Heuristic Optimality

Check (HOC) by default. However, the results clearly indicate that this is a good
idea for all solvers (with the possible exception of YALL1), producing more accurate
solutions and typically reducing the running times at the same time. Considering
the various implementations as they actually can be downloaded to date, ISAL1
(containing HOC) may be a good alternative to Cplex and SoPlex when small- to
medium-scale problems are to be solved. However, once HOC is also integrated into
the other solvers, `1-Homotopy becomes the best code on such instances, followed
closely by SPGL1. For large-scale instances with sparse matrices, the two LP solvers
fare best; however, `1-Homotopy with HOC is very close behind.
The average performance of `1-Homotopy could be improved significantly by a

slight modification of the code and by integrating HOC. Deviating from theoretical
requirements, `1-Homotopy with final regularization parameter 10−9 instead of 0

in fact turned out to be the fastest reliable solver. With this parameter choice,
using HOC does not really seem beneficial (the accuracy is slightly improved while
small overheads are often introduced). On the other hand, we also observed from a
few experiments, that using an even larger regularization parameter (e.g., 10−4) still
allowed for extracting the optimal support from the point produced by `1-Homotopy
by a simple hard-thresholding scheme like (3.1); a theoretical justification is given
by the results in [240, 176] on exact support recovery. This suggests that it may,
in principle, be worth integrating HOC into `1-Homotopy. In particular, this might
hold true for a variant in which the homotopy path is not followed exactly but
only approximately, see [180], which might avoid some numerical problems of the
homotopy method that apparently occur when the “kinks” in the homotopy path
become hard to distinguish as the distances between them get close to machine
precision.

3.5. Equivalence of Basis Pursuit and Linear Programming 97

3.5 Equivalence of Basis Pursuit and Linear
Programming

It is well-known that the Basis Pursuit problem (P1) can be reformulated as a linear
program, see (3.4) and (3.5). In fact, the results in Section 3.4 show that this
approach yields some of the fastest and most reliable methods in practice. In this
section, we show that (for rational data) the converse holds as well: Every (bounded,
feasible) LP can be transformed into an equivalent `1-minimization problem.
We will call two problems polynomially equivalent, if any instance of one problem

can be reduced to an instance of the other (and vice versa) in polynomial time
and space. The reductions we employ here are of this type; in particular, the
encoding lengths of the constructed instances are polynomially bounded by those of
the respective input instances.

3.5.1 Related Work

An equivalence between a linear program and a (seemingly) different `1-minimization
problem has been noted before: In [15], the problem of minimizing the `1-norm
violation of an overdetermined system (also known as least absolute value (LAV)
regression, see, e.g., [86] and the references therein),

min ‖Mξ − f‖1, (3.7)

was considered (here,M ∈ Rp×n with p > n and f ∈ Rp), and it was shown that any
bounded feasible linear program can be rewritten into the form of the dual of (3.7),

min f>y s.t. M>y = 0, −1 ≤ y ≤ 1.

The reduction in [15] is very similar in spirit to ours (see Section 3.5.3 below); in
particular, it involves a certain “Big-M” argument and dualization. However, [15]
merely sketches the procedure without giving precise values for several constants
needed in the transformation, only stating that they need to be “suitably large”. In
our reduction, we will derive the corresponding values explicitly. In particular, we
will see that the constants can be chosen such that their encoding lengths depend
polynomially on that of the LP.
It is noteworthy that (3.7) is actually equivalent to a problem of the form (P1).

This was observed before, e.g., in [50], where (3.7) was considered in the context
of restoring code words that are corrupted by sparse errors. We provide a different

98 Chapter 3. Solving Basis Pursuit

proof below, for completeness of our discussion and because parts of it are used in
the results to follow.
First, note that (P1) can be recast as an unconstrained optimization problem.

Lemma 3.11. The Basis Pursuit problem (P1) is polynomially equivalent to

min ‖z‖1 + ‖d−Dz‖1, (P†1)

where D is a matrix, d is a vector and minimization is performed over z.

Proof. Let A ∈ Rm×n with rank(A) = m < n and b ∈ Rm be an instance for the
Basis Pursuit problem min{ ‖x‖1 : Ax = b }. We make use of a basis decomposition
(or variable reduction) technique as known from the simplex algorithm for linear
programs: Let B ⊆ [n] with |B| = m be an arbitrary basis, i.e., such that AB is
regular (square and full-rank), and let N := [n] \ B. Clearly, some basis B can be
found in polynomial time, by Gaussian elimination. Then, we can rewrite

Ax = b ⇔ ABxB +ANxN = b ⇔ xB = A−1
B b−A−1

B ANxN .

Obviously, xN = 0 always yields a feasible solution (along with xB = A−1
B b) for (P1);

in fact, xN ∈ N (AN) suffices. Let

z := xN , D := A−1
B AN , and d := A−1

B b. (3.8)

Thus, the constraint Ax = b is incorporated into the definitions of z, D and d (it
holds implicitly), whence (P1) is equivalent to a problem in form (P†1):

(P1) = min{ ‖xN‖1 + ‖xB‖1 : ABxB +ANxN = b }
= min ‖z‖1 + ‖d−Dz‖1. (3.9)

Optimal solutions x∗ and z∗ of (P1) and (3.9), respectively, determine each other
via (3.8), with respect to the given, fixed B and N .
Conversely, for an instance D ∈ Rm×p, d ∈ Rm of (P†1), an equivalent instance

of (P1) is given by A = (I, D) and b = d. The correspondence between optimal
solutions z∗ and x∗ is again described by the relations (3.8), using B = [m] and
N = {m+ 1, . . . ,m+ p}; i.e., z∗ = x∗N , and (d−Dz∗) = x∗B holds implicitly.

It is easily observed that (P†1) can be stated in the form (3.7):

min ‖z‖1 + ‖d−Dz‖1 = min

∥∥∥∥(I

D

)
z −

(
0

d

)∥∥∥∥
1

. (3.10)

3.5. Equivalence of Basis Pursuit and Linear Programming 99

Indeed, if D is m × p then (I>, D>)> is (m + p) × p, and hence the system whose
`1-norm violation is minimized in (3.10) is overdetermined, as intended for (3.7).
Combined with the proof of Lemma 3.11, this shows the first direction of the fol-
lowing result.

Proposition 3.12. The Basis Pursuit problem (P1) is polynomially equivalent to
the LAV regression problem (3.7).

Proof. It remains to show that we can bring any instance of (3.7) into the form (P†1).
Given M ∈ Rp×q with p ≥ q and f ∈ Rq, assume w.l.o.g. that rank(M) = q and
that the first q rows of M are linearly independent. With the variable substitution
z = M[q],[q]ξ − f[q], we obtain:

min ‖Mξ − f‖1 = min

∥∥∥∥(M[q],[q]

M{q+1,...,p},[q]

)
ξ −

(
f[q]

f{q+1,...,p}

)∥∥∥∥
1

= min

∥∥∥∥(Iz − 0

Dz − d

)∥∥∥∥
1

= min ‖z‖1 + ‖d−Dz‖1,

where D = M{q+1,...,p},[q]M
−1
[q],[q] and d = f{q+1,...,p}−Df[q]. Note that the resulting

(P1) instance A = (I, D), b = d (cf. the proof of Lemma 3.11) has A ∈ R(p−q)×p,
so the system Ax = b is indeed underdetermined, as we require for (P1).

By these results, one could reduce a given linear program to (P1) also by using
the transformation sketched in [15], dualizing, and then applying Proposition 3.12.
However, the reduction we will present below avoids this intermediate step involving
(3.7), and builds on Lemma 3.11 directly.

3.5.2 Preliminaries

In the following, we give further auxiliary results that will be employed in the
announced reduction.

Lemma 3.13. The dual problem of (P†1) reads

max −d>q s.t. ‖q‖∞ ≤ 1, ‖D>q‖∞ ≤ 1. (D†1)

Proof. Recall from the proof of Lemma 3.11 that (P†1) can be written as the Ba-
sis Pursuit problem min{ ‖x‖1 : (I, D)x = d }. By Lemma 1.5, the dual of (P†1)
is therefore given by max{−d>q : ‖q>(I, D)‖∞ ≤ 1 }, which corresponds exactly
to (D†1).

100 Chapter 3. Solving Basis Pursuit

Remark 3.14. Note that strong duality holds for (P†1) and (D†1), i.e., since both
are (clearly) bounded and always have feasible points, they each have an optimal
solution and the corresponding (finite) objective function values coincide. Thus,
(P†1) and (D†1) are in fact polynomially equivalent, and by Lemma 3.11, the same
holds for (P1) and (D†1).

The next lemma gathers some results about encoding lengths.

Lemma 3.15.
(i) For r, s ∈ Q, it holds that

〈rs〉 ≤ 〈r〉+ 〈s〉. (3.11)

More generally, for A ∈ Qm×n and B ∈ Qn×p, it holds that

〈AB〉 ≤ p 〈A〉+m 〈B〉. (3.12)

(ii) For all r1, r2, . . . , rn ∈ Q, it holds that

〈r1 + r2 + · · ·+ rn〉 ≤ 2
(
〈r1〉+ 〈r2〉+ · · ·+ 〈rn〉

)
. (3.13)

(iii) For any nonsingular A ∈ Qn×n, it holds that

〈A−1〉 ≤ 4n2 〈A〉. (3.14)

(iv) Given A ∈ Qm×n and b ∈ Qm, for every vertex v = (v1, . . . , vn)> of
a polyhedron in any one of the forms {x : Ax ≤ b }, {x : Ax = b } or
{x : Ax ≤ b, x ≥ 0 }, it holds that

|vj | ≤ 22 〈A〉+〈b〉−2n2

for all j ∈ [n]. (3.15)

(v) For any positive integer z ∈ N, it holds that

〈z〉 ≤ 3 + log2(z) and 〈2z〉 ≤ 2 + z. (3.16)

Moreover, for z ∈ Z with |z| > 1 and 0 6= r ∈ Q, it holds that

〈1/z〉 = 2 + 〈z〉 and 〈1/r〉 = 〈r〉. (3.17)

(vi) For a vector u ∈ Qn, it holds that

〈‖u‖1〉 ≤ 2 〈u〉. (3.18)

3.5. Equivalence of Basis Pursuit and Linear Programming 101

Proof. The first three statements can be found in [128, pp. 30f]; the fourth appears
in [97, Satz 6.6]. Moreover, 〈z〉 = 1+dlog2(|z|+1)e ≤ 1+(1+blog2(2z)c) ≤ 3+log2(z)

and 〈2z〉 = 1+dlog2(|2z|+1)e ≤ 1+dlog2(2z+1)e = 2+z, for any z ∈ N, which proves
(3.16). Regarding (3.17), recall that 〈r〉 = 〈s〉 + 〈t〉 for mutually prime integers s
and t such that r = s/t; thus, 1/r = t/s and therefore 〈1/r〉 = 〈r〉. Furthermore,
for z ∈ Z with |z| > 1, 〈1/z〉 = 〈1〉 + 〈z〉 = 2 + 〈z〉 (for z ∈ {±1}, 〈1/z〉 = 〈z〉).
Finally, the last statement follows directly from (3.13), since ‖u‖1 =

∑n
j=1|uj | (and

〈|r|〉 = 〈r〉 for r ∈ Q).

3.5.3 The Reduction

Consider a linear program in standard inequality form:

max c>x s.t. Ax ≤ b, x ≥ 0, (LP)

with rational data A ∈ Qm×n, b ∈ Qm and c ∈ Qn. Throughout, we assume w.l.o.g.
that A does not contain any all-zero rows or columns.
Additionally, we will make the following assumptions. The first two are fairly

natural, while the third allows for a better presentation of the main proof and is, in
fact, not necessary (see Proposition 3.19 later).

Assumption 3.16.
(i) The inequality system of (LP) describes a nonempty polyhedron,
(ii) the objective function c>x remains bounded over this polyhedron, and
(iii) for all i = 1, . . . ,m,

bi 6=
K

2

(n∑
j=1

aij

)
− ‖a>i ‖1

 =
K

2

(
a>i 1− ‖a>i ‖1

)
,

where K := 22 〈A〉+〈b〉−2n2

> 0 is the constant from (3.15).

Theorem 3.17. Under Assumption 3.16, the linear program (LP) is polynomially
equivalent to the Basis Pursuit problem (P1).

Proof. We already know that (P1) can be reformulated as an LP, see (3.4) or (3.5);
the same clearly holds for (D†1), since its constraints can be restated as −1 ≤ q ≤ 1,
−1 ≤ D>q ≤ 1. Moreover, it is well-known that every linear program can be
stated in the above standard inequality form (LP). Thus, because (P1) and (D†1)

102 Chapter 3. Solving Basis Pursuit

are polynomially equivalent by Remark 3.14, it remains to show that (LP) can be
transformed into an instance of (D†1) (under Assumption 3.16).
By Assumption 3.16, the optimum of (LP) is finite and therefore attained at

a vertex of {x : Ax ≤ b, x ≥ 0 } 6= ∅. Thus, we can restrict our attention to a
bounded polyhedron (i.e., a polytope) by explicitly including a constraint of the
sort (3.15) for each variable; see also [206, Theorem 2.2]. Note that this does not
cut off any vertices, since these constraints are implied by the data. Since in (LP),
x ≥ 0 and hence |xj | = xj for all j ∈ [n], it follows from Lemma 3.15(iv) that (LP)
is equivalent to

max c>x s.t. Ax ≤ b, 0 ≤ x ≤ K1, (3.19)

with K := 22〈A〉+〈b〉−2n2

as in Assumption 3.16(iii). Substituting x by K
2 (1+ y),

i.e., with y := 2
Kx− 1, we see that (3.19) is equivalent to

max c>
(
K
2 1+ K

2 y
)

s.t. A
(
K
2 1+ K

2 y
)
≤ b, 0 ≤ K

2 1+ K
2 y ≤ K1.

Omitting the constant terms and factors in the objective, and denoting r := 2
K b−A1,

this can be rewritten as

max c>y s.t. Ay ≤ r, −1 ≤ y ≤ 1
= max c>y s.t. Ay ≤ r, ‖y‖∞ ≤ 1. (3.20)

Now observe that −1 ≤ y ≤ 1 implies that −‖a>i ‖1 ≤ a>i y ≤ ‖a>i ‖1 for
all i ∈ [m]. Together with the constraint Ay ≤ r, this yields

− ‖a>i ‖1 ≤ a>i y ≤ min{ri, ‖a>i ‖1} for all i ∈ [m]. (3.21)

Note that, if ri > ‖a>i ‖1 for some i ∈ [m], then the constraint a>i y ≤ ri is in fact
redundant and can be omitted. Thus, we can assume w.l.o.g. that we always have
min{ri, ‖a>i ‖1} = ri. Moreover, by Assumption 3.16(i), ri < −‖a>i ‖1 is impossible
(because it would imply inconsistency of the constraint system), and by Assump-
tion 3.16(iii), we know that ri 6= −‖a>i ‖1. Also, because A contains no zero rows,
we have ‖a>i ‖1 6= 0> for all i ∈ [m]. Therefore,

(3.21) ⇔ −‖a>i ‖1 ≤ a>i y ≤ ri ⇔ −1 ≤ ã>i y + δi ≤ 1, (3.22)

where

ã>i :=
2

‖a>i ‖1 + ri
a>i and δi :=

‖a>i ‖1 − ri
‖a>i ‖1 + ri

. (3.23)

In particular, δi ≥ 0, and if ri = ‖a>i ‖1 then δi = 0 and ã>i = (1/‖a>i ‖1)a>i .
Thus, we can replace the constraint system Ay ≤ r by box constraints of the

3.5. Equivalence of Basis Pursuit and Linear Programming 103

form (3.22). Letting Ã be the matrix consisting of rows ã>i and δ the vector con-
taining the numbers δi (as defined in (3.23)), this shows that (3.20) is equivalent to

max c>y s.t. − 1 ≤ Ãy + δ ≤ 1, ‖y‖∞ ≤ 1

= max c>y s.t. ‖Ãy + δ‖∞ ≤ 1, ‖y‖∞ ≤ 1. (3.24)

The only difference between (3.24) and the desired form (D†1) is the presence of
the constant “shifts” δi in the constraint system. We can eliminate these shifts by a
sort of lifting procedure, which we describe in the following.
First, consider a single box constraint

− 1 ≤ ã>i y + δi ≤ 1 ⇔ −1− δi ≤ ã>i y ≤ 1− δi. (3.25)

Our goal is to transform the shift δi into the coefficient of a new variable z ∈ [−1, 1],
thereby obtaining the desired unit box constraint form. To that end, suppose we
assign an objective function coefficient M to z. If M is sufficiently large (hence
the name “Big-M” for this kind of argument), setting z = 1 is superior to any other
choice and implicitly enforces the original constraint (3.25) on y. In fact, it is easy
to see that we need only one additional variable z to transform all constraints (3.25),
i.e., we replace δ by δz. Then, if z = 1, the original bounds are restored, and an
optimal solution of (3.24) is indeed in one-to-one correspondence with the y-part of
an optimal solution for

max c>y +Mz s.t.

∥∥∥∥(Ã, δ)(y

z

)∥∥∥∥
∞
≤ 1,

∥∥∥∥(y

z

)∥∥∥∥
∞
≤ 1. (3.26)

Note that with respect to any fixed value of z, replacing the constant shift δi
by δiz can be regarded as changing the i-th box constraint bounds on Ãy. Let Â
and b̂ denote the matrix and vector such that Ây ≤ b̂ is equivalent to the con-
straints in (3.24); i.e., Â is the concatenation of Ã, −Ã, I and −I, and b̂ contains
1− δ, 1+ δ, 1 and 1 (placed above each other in the given order to form Â and b̂,
respectively). Replacing δi by δiz (for some fixed z) changes only the two entries
in b̂ that correspond to (3.25); namely, from 1± δi to 1± δiz. Thus, considering all
bound changes (w.r.t. all rows (3.25)) simultaneously, we replace 1 ± δ by 1 ± δz,
respectively.
Concerning the resulting possible variation in the LP objective due to changing

the right hand side b̂ to some b̂′, the following estimate is known [224, p. 126]:∣∣ max{ c>y : Ây ≤ b̂ } −max{ c>y : Ây ≤ b̂′ }
∣∣ ≤ nβ ‖c‖1 ‖b̂− b̂′‖∞,

104 Chapter 3. Solving Basis Pursuit

where β is an upper bound on the absolute values of all entries in the inverses of all
regular submatrices B of Â. (This result is only applicable if both LPs occurring
in the above expression are finite, which is, however, clear in our case, since y is
bounded.) From the above discussion, in our case, we have for any z ∈ [−1, 1] that

‖b̂− b̂′‖∞ = max
i∈[m]

{
|1− δi − (1− δiz)|, |1 + δi − (1 + δiz)|

}
= max

i∈[m]
{ δi }(1− z);

recall also that each δi ≥ 0. Moreover, it is known (see [128, Lemma 1.3.3]) that for
all r ∈ Q, |r| ≤ 2〈r〉−1 − 1. With this, we obtain an upper bound on |(B−1)ij |:

β := 24n2〈Â〉 ≥ 24n2〈B〉
(3.14)
≥ 2〈B

−1〉 ≥ 2〈|(B
−1)ij |〉−1 − 1 ≥ |(B−1)ij |.

To summarize, due to implicit bound changes for Ãy caused by introducing the
variable z ∈ [−1, 1], the objective value contribution of y can increase (with respect
to the optimal value of (3.24)) by at most

nβ ‖c‖1 max
i∈[m]
{ δi }(1− z) = 24n2〈Â〉 n ‖c‖1 max

i∈[m]
{ δi }︸ ︷︷ ︸

=:M

(1− z).

Now, choosing any value M > M as the objective function coefficient for z will
suffice, i.e., it guarantees that for the problem (3.26), any optimal point ((y∗)>, z∗)>

has z∗ = 1 and y∗ is an optimal solution of (3.24). To see this, supposeM =Mε =

M + ε for some ε > 0. Then, by the above discussion and since −1 ≤ z∗ ≤ 1

(and hence, M(1− z∗) ≥ 0), an upper bound for the objective value in any feasible
point (y>, z)> of (3.26) is given by

c>y+Mεz ≤ c>y∗ +M(1− z∗) + (M + ε)z∗ = c>y∗ +M + ε z∗ ≤ c>y∗ +Mε.

Here, the last inequality holds with equality if and only if z∗ = 1, in which case this
upper bound is sharp: The optimal objective of (3.26) then is precisely c>y∗+Mε,
and since z∗ = 1, y∗ solves (3.24), as argued above. (Conversely, if y∗ is an optimal
solution of (3.24), then ((y∗)>, 1)> is feasible for (3.26) by construction, and for
M > M , we saw that no other value than z∗ = 1 can possibly be optimal in (3.26),
which entails that y∗ is the y-part of an optimal solution of (3.26).)
Thus, (3.24) can be restated equivalently as (3.26), which is clearly an instance

of (D†1). It remains to note that with (say) M := M + 1, all transformations de-
scribed in this proof can clearly be performed in polynomial time, and the encoding
length of (3.26) is polynomially bounded by that of (LP); see Section 3.5.4 below
for more details.

3.5. Equivalence of Basis Pursuit and Linear Programming 105

Remark 3.18. Clearly, if for some j ∈ [n], the linear program contains variable
bounds `j ≤ xj ≤ uj , these do not have to be included into the main inequality
constraint Ax ≤ b but could be used directly, instead of the artificial construction
0 ≤ xj ≤ K.

The following result shows that the assumptions under which we proved Theo-
rem 3.17 are, in a sense, not essential.

Proposition 3.19. Theorem 3.17 remains valid even without Assumption 3.16(iii).
Moreover, with K̃ ≥ K replacing K in the construction of the instance (3.26):
(i) (LP) is infeasible if and only if bi < K̃(a>i 1−‖a>i ‖1)/2 for some i ∈ [m] or if

z∗ < 1 holds for every optimal solution ((y∗)>, z∗)> of (3.26).
(ii) (LP) is unbounded if and only if (3.26) constructed with K̃ > K has an optimal

solution ((y∗)>, 1)> with y∗i = 1 for some i ∈ [m].

Proof. We start by considering the consequences of omitting Assumption 3.16(iii),
which deals with the case ri = −‖a>i ‖1 that might be encountered during the trans-
formation process. Clearly, with K = 22〈A〉+〈b〉−2n2

,

ri = −‖a>i ‖1 ⇔ bi =
K

2

(
a>i 1− ‖a>i ‖1

)
. (3.27)

First, note that we can w.l.o.g. exclude the simultaneous occurrence of bi = 0

and (3.27): In this case, the latter equality holds if and only if a>i 1 = ‖a>i ‖1, which
implies, in particular, that aij ≥ 0 for all j ∈ [n]. But then a>i x ≤ bi = 0 with x ≥ 0

forces xj = 0 for all j with aij 6= 0, in every feasible solution of (LP). Therefore,
these variables and row i can be eliminated from the LP a priori.
Thus, suppose that (3.27) holds with bi 6= 0 (which would imply a>i 6= 0, but

recall that this was already assumed throughout). The equality (3.27) is “fragile”
with respect to scaling, since it depends on the encoding length of the data.
To exploit this, assume w.l.o.g. that a>i ∈ Zm and bi ∈ Z. This can always be

achieved, in polynomial time, by scaling with the least common denominator L of
the entries. Since such scaling may both reduce or increase the encoding lengths of
entries aij and bi, possibly 〈a>i 〉+ 〈bi〉 = 〈La>i 〉+〈Lbi〉, in which case K remains the
same and (3.27) still holds with a>i and bi replaced by La>i and Lbi, respectively.
Let c := min{ |bi|, min{ |aij | : j ∈ [n], aij 6= 0 } } and α := (2c + 2)/c (note that

c ≥ 1 because bi is a nonzero integer—and a>i contains at least one—and that
consequently, 2 < α ≤ 4). If we scale the inequality a>i x ≤ bi by α and update K
accordingly, (3.27) can no longer hold with respect to the scaled data. To see this,

106 Chapter 3. Solving Basis Pursuit

assume to the contrary that

αbi = 22〈A[m]\{i},[n]〉+2〈αa>i 〉+〈b[m]\{i}〉+〈αbi〉−2n2−1(αa>i 1− ‖αa>i ‖1),

which is equivalent to

bi = 22〈A[m]\{i},[n]〉+2〈αa>i 〉+〈b[m]\{i}〉+〈αbi〉−2n2−1(a>i 1− ‖a>i ‖1).

Equating this with the identity for bi from (3.27), we obtain (after cancelations)

22〈a>i 〉+〈bi〉 = 22〈αa>i 〉+〈αbi〉 ⇔ 2〈a>i 〉+ 〈bi〉 = 2〈αa>i 〉+ 〈αbi〉. (3.28)

However, this is a contradiction: Assume w.l.o.g. that c = |bi|. Since α > 2 and
a>i ∈ Zn, it holds that 〈αa>i 〉 ≥ 〈a>i 〉. Moreover,

α >
2c+ 1

c
⇔ 2(c+ 1) < αc+ 1 ⇔ log2(c+ 1) + 1 < log2(αc+ 1),

and since we also have log2(c + 1) + 1 ≥ blog2(c + 1)c + 1 ≥ dlog2(c + 1)e and
log2(αc+ 1) ≤ dlog2(αc+ 1)e, this implies that

〈c〉 = 1 + dlog2(c+ 1)e < 1 + dlog2(αc+ 1)e = 〈αc〉.

Therefore,

2〈αa>i 〉+ 〈αbi〉 ≥ 2〈a>i 〉+ 〈αc〉 > 2〈a>i 〉+ 〈c〉 = 2〈a>i 〉+ 〈bi〉,

so indeed, (3.28) cannot hold. This shows that the case ri = −‖a>i ‖1 can always be
avoided by appropriate scaling of the i-th constraint a>i x ≤ bi.
Thus, we conclude that Assumption 3.16(iii) is in fact not needed for the proof of

Theorem 3.17 and can be dropped without loss of generality. Moreover, note that
replacing K by K̃ = γK with γ ≥ 1 does not change anything: The case bi = 0 is
independent of K, and γ cancels out in (3.28).
Now consider statement (i). Let P := {x : Ax ≤ b, x ≥ 0 }. If (LP) is infeasible

(i.e., P = ∅), possibly ri < −‖a>i ‖1 for some i, which is easily detected during the
construction of the (3.26) instance (equivalently, bi < K

2 (a>i 1−‖a>i ‖1), which could
be checked a priori). Thus, for the remainder of this paragraph, suppose “trivial”
infeasibility ri < −‖a>i ‖1 does not occur, but still it holds that P = ∅. Note that
then, (3.26) can always be successfully constructed and is, in fact, always feasible
(cf. Remark 3.14). Since the preceding intermediate transformed problem (3.24) is
infeasible if and only if (LP) is, it is clear that the feasibility of (3.26) is directly
caused by introducing z and relaxing z = 1 (which yields direct correspondence

3.5. Equivalence of Basis Pursuit and Linear Programming 107

of (3.26) and (3.24)) to z ∈ [−1, 1]. Thus, we have P = ∅ if and only if the set
of points (y>, z)> that satisfy the constraints of (3.26) with z = 1 is empty. In
particular, by construction ofM, if and only if every optimal solution ((y∗)>, z∗)>

of (3.26) has z∗ < 1, then the original (LP) is infeasible. Therefore, P = ∅ can be
detected (a posteriori) by inspecting the optimal solution of (3.26), whenever (3.26)
is constructible. It remains to note that clearly, using any K̃ ≥ K instead of K does
not change the above argumentation, which concludes the proof of statement (i).
Finally, we turn to statement (ii): Suppose we replaced K by some K̃ > K in the

proof of Theorem 3.17, and that P 6= ∅. Then, if (LP) is bounded, xj ≤ K holds
implicitly for all vertices x (in particular, optimal solutions) by Lemma 3.15(iv),
and therefore xj ≤ K̃ as well (in fact, xj < K̃). On the other hand, if and only
if c>x can become arbitrarily large, then for at least one j∗ ∈ [n], xj∗ can be
increased infinitely in (LP). Since adding the inequalities xj ≤ K̃, j ∈ [n], makes
the problem bounded, in any optimal solution x̃ of (3.19), x̃j∗ will instead reach its
upper bound, i.e., x̃j∗ = K̃. This can be expressed in terms of y = (2/K̃)x − 1
as well: In an optimal solution ((y∗)>, 1)> of the transformed problem (3.26) we
have y∗j = 2K̃/K̃ − 1 = 1, for some j ∈ [n], if and only if the original problem
(LP) is unbounded. Thus, like nontrivial infeasibility, unboundedness of (LP) can
be detected a posteriori by inspecting the optimal solution of (3.26).

3.5.4 Detailed Complexity Analysis

We now examine how the encoding length of the problem changes in the reduction
from (LP) to a BP instance. The transformation is clearly problematic in practice
since, in particular, M is extremely large (although its encoding length is polyno-
mially related to that of the input instance). Nevertheless, a careful analysis can
yield further insights into the relationship between the two problems, for instance,
regarding asymptotical (worst-case) running time bounds.
For the reduction from Theorem 3.17, we obtain the following:

Theorem 3.20. Let the linear program

max c>x s.t. Ax ≤ b, x ≥ 0 (LP)

with A ∈ Qm×n, b ∈ Qm, satisfy Assumption 3.16 and let

min ‖x‖1 s.t.

(
I,

(
Ã>

δ>

))
x =

(
c

M

)
(3.29)

108 Chapter 3. Solving Basis Pursuit

be the Basis Pursuit problem obtained by transforming (LP) as shown in the proof
of Theorem 3.17 (cf. Lemma 3.11 and Remark 3.14). Then

〈 (3.29) 〉 ∈ O
(
nm(〈A〉+ 〈b〉) + 〈c〉+ n3m

)
⊆ O

(
nm〈 (LP) 〉+ n3m

)
. (3.30)

Proof. The encoding length of the (LP) data is

〈 (LP) 〉 = 〈A〉+ 〈b〉+ 〈c〉+ n〈0〉 = 〈A〉+ 〈b〉+ 〈c〉+ n.

Having transformed (LP) into (3.26), we obtain (3.29) by dualizing (3.26) and ap-
plying Lemma 3.11. Let D> := (Ã, δ) ∈ Qm×(n+1) and d> := (c>,M), and note
that I = In+1. Therefore, we have

〈 (3.29) 〉 = 〈(I,D)〉+ 〈d〉 = ((n+ 1)〈1〉+ (n2 + n)〈0〉) + 〈Ã〉+ 〈δ〉+ 〈c〉+ 〈M〉
= 〈Ã〉+ 〈δ〉+ 〈c〉+ 〈M〉+ n2 + 3n+ 2. (3.31)

In the following, we derive bounds on the encoding lengths of Ã, δ andM.
We start with Ã: Recall that

〈Ã〉 =

m∑
i=1

〈ã>i 〉,

and that, for any i ∈ [m],

ã>i =

1

‖a>i ‖1
a>i , if min{ri, ‖a>i ‖1} = ‖a>i ‖1,

2
‖a>i ‖1+ri

a>i , if min{ri, ‖a>i ‖1} = ri /∈ {‖a>i ‖1,−‖a>i ‖1}.

For the first case we obtain

〈ã>i 〉 =

〈
1

‖a>i ‖1
a>i

〉
(3.12)
≤ n

〈
1

‖a>i ‖1

〉
+ 〈a>i 〉

(3.17)
≤ 2n+ n〈‖a>i ‖1〉+ 〈a>i 〉

(3.18)
≤ (2n+ 1)〈a>i 〉+ 2n. (3.32)

Now consider the second case. For ri = 2
K bi − a

>
i 1, we derive

〈ri〉 =

〈
2

K
bi − a>i 1

〉
=

〈
21+2n2−2〈A〉−〈b〉bi −

n∑
j=1

aij

〉
(3.13),(3.11)

≤ 2

〈2〉+
〈

22n2
〉

+

〈
1

22〈A〉

〉
+

〈
1

2〈b〉

〉
+ 〈bi〉+

〈
n∑
j=1

aij

〉

3.5. Equivalence of Basis Pursuit and Linear Programming 109

(3.13),(3.17)
≤ 2

3 +
〈

22n2
〉

+ 2 +
〈

22〈A〉
〉

+ 2 +
〈

2〈b〉
〉

+ 〈bi〉+ 2

n∑
j=1

〈aij〉

(3.16)
≤ 14 + 2(2 + 2n2) + 2(2 + 2〈A〉) + 2(2 + 〈b〉) + 2〈bi〉+ 4〈a>i 〉
= 4〈A〉+ 2〈b〉+ 4〈a>i 〉+ 2〈bi〉+ 4n2 + 26. (3.33)

Thus, we obtain

〈ã>i 〉 =

〈
2

‖a>i ‖1 + ri
a>i

〉
(3.12),(3.11)
≤ n

(
〈2〉+

〈
1

‖a>i ‖1 + ri

〉)
+ 〈a>i 〉

(3.17)
≤ 3n+ 2n+ n〈‖a>i ‖1 + ri〉+ 〈a>i 〉

(3.13),(3.18)
≤ (4n+ 1)〈a>i 〉+ 2n〈ri〉+ 5n

(3.33)
≤ (4n+ 1)〈a>i 〉+ 5n+ 2n

(
4〈A〉+ 2〈b〉+ 4〈a>i 〉+ 2〈bi〉+ 4n2 + 26

)
= 8n〈A〉+ 4n〈b〉+ (12n+ 1)〈a>i 〉+ 4n〈bi〉+ 8n3 + 52n. (3.34)

Clearly, the bound (3.34) is larger than the one from the first case, (3.32). Thus,
we estimate the encoding length of Ã as

〈Ã〉
(3.34)
≤ 8nm〈A〉+ 4nm〈b〉+ (12n+ 1)

m∑
i=1

〈a>i 〉+ 4n

m∑
i=1

〈bi〉+ 8n3m+ 52nm

= (8nm+ 12n+ 1)〈A〉+ (4nm+ 4n)〈b〉+ 8n3m+ 52nm. (3.35)

Moreover, we obtain (for all i ∈ [m])

〈δi〉 =

〈
‖a>i ‖1 − ri
‖a>i ‖1 + ri

〉
(3.11)
≤ 〈‖a>i ‖1 − ri〉+

〈
1

‖a>i ‖1 + ri

〉
(3.13),(3.17)

≤ 2〈‖a>i ‖1〉+ 2〈ri〉+ 2
(
〈‖a>i ‖1〉+ 〈ri〉

)
+ 2

(3.18)
≤ 8〈a>i 〉+ 4〈ri〉+ 2

(3.33)
≤ 16〈A〉+ 8〈b〉+ 24〈a>i 〉+ 8〈bi〉+ 16n2 + 106, (3.36)

and therefore

〈δ〉 =

m∑
i=1

〈δi〉
(3.36)
≤ 16m〈A〉+ 8m〈b〉+ 24

m∑
i=1

〈a>i 〉+ 8

m∑
i=1

〈bi〉+ 16n2m+ 106m

= (16m+ 24)〈A〉+ (8m+ 8)〈b〉+ 16n2m+ 106m. (3.37)

110 Chapter 3. Solving Basis Pursuit

Finally, it remains to bound 〈M〉. Recall that

M := 24n2〈Â〉 n ‖c‖1 max
i∈[m]
{ δi }+ 1,

where Â = (Ã>,−Ã>, In,−In)>. By (3.35), it holds that

〈Â〉 = 〈Ã〉+ 〈−Ã〉+ 〈In〉+ 〈−In〉 = 2〈Ã〉+ 2〈In〉
≤ (16nm+ 24n+ 2)〈A〉+ (8nm+ 8n)〈b〉+ 16n3m+ 2n2 + 104nm+ 2n.

(3.38)

Thus, we obtain

〈M〉 ≤
〈

24n2〈Â〉 n ‖c‖1 max
i∈[m]
{ δi }+ 1

〉
(3.11),(3.13)

≤ 2

(〈
24n2

〉
+
〈

2〈Â〉
〉

+ 〈n〉+ 〈‖c‖1〉+

〈
max
i∈[m]
{ δi }

〉
+ 〈1〉

)
(3.16),(3.18)

≤ 2
(

2 + 4n2 + 2 + 〈Â〉+ 〈n〉+ 2〈c〉+ 〈δ〉+ 2
)

(3.16)
≤ 2〈Â〉+ 2〈δ〉+ 4〈c〉+ 8n2 + 6 + 2 log2(n) + 12

(3.37),(3.38)
≤ (32nm+ 48n+ 4)〈A〉+ (16nm+ 16n)〈b〉

+ 32n3m+ 4n2 + 208nm+ 4n

+ (32m+ 48)〈A〉+ (16m+ 16)〈b〉+ 32n2m+ 212m

+ 4〈c〉+ 8n2 + 2 log2(n) + 18

= (32nm+ 48n+ 32m+ 52)〈A〉
+ (16nm+ 16n+ 16m+ 16)〈b〉+ 4〈c〉
+ 32n3m+ 32n2m+ 12n2 + 208nm+ 4n

+ 212m+ 2 log2(n) + 18. (3.39)

With (3.35), (3.37) and (3.39), we obtain from (3.31) the following upper bound for
the encoding length of the `1-minimization problem (3.29) obtained by transforming
the linear program (LP):

〈 (3.29) 〉 = 〈Ã〉+ 〈δ〉+ 〈M〉+ 〈c〉+ n2 + 3n+ 2

≤ (8nm+ 12n+ 1)〈A〉+ (4nm+ 4n)〈b〉+ 8n3m+ 52nm

+ (16m+ 24)〈A〉+ (8m+ 8)〈b〉+ 16n2m+ 106m

+ (32nm+ 48n+ 32m+ 52)〈A〉+ (16nm+ 16n+ 16m+ 16)〈b〉

3.5. Equivalence of Basis Pursuit and Linear Programming 111

+ 4〈c〉+ 32n3m+ 32n2m+ 12n2 + 208nm

+ 4n+ 212m+ 2 log2(n) + 18 + 〈c〉+ n2 + 3n+ 2

= (40nm+ 60n+ 48m+ 77)〈A〉+ (20nm+ 20n+ 24m+ 24)〈b〉+ 5〈c〉
+ 40n3m+ 48n2m+ 13n2 + 260nm+ 7n+ 2 log2(n) + 318m+ 20.

Thus, we obtain the claimed asymptotic bound (3.30):

〈 (3.29) 〉 ∈ O
(
nm(〈A〉+ 〈b〉) + 〈c〉+ n3m

)
⊆ O

(
nm(〈A〉+ 〈b〉+ 〈c〉+ n) + n3m

)
= O

(
nm〈 (LP) 〉+ n3m

)
.

This concludes the proof.

The O(n3m) term in the above estimate cannot be dropped in general, because,
for instance, if 〈A〉, 〈b〉, 〈c〉 ∈ O(n2) then O(nm〈 (LP) 〉 + n3m) ⊆ O(n3m). This
situation is indeed possible: Consider A ∈ {0,±1}m×n with just two nonzero entries
per column (e.g., the incidence matrix of a directed graph), and let b and c be
ternary as well. Then, 〈b〉, 〈c〉 ∈ O(〈A〉), and

〈A〉 = 2n〈1〉+ (nm− 2n)〈0〉 = nm+ 2n ∈ O(nm).

Thus, whenever n ≥ m, 〈A〉 ∈ O(n2) and nm〈A〉 ∈ O(n2m2) ⊆ O(n3m).
On the other hand, if 〈A〉 + 〈b〉 ∈ Ω(n2), then n3m ∈ O(nm(〈A〉 + 〈b〉)) and

consequently,

〈 (3.29) 〉 ∈ O
(
nm(〈A〉+ 〈b〉) + 〈c〉

)
⊆ O

(
nm〈 (LP) 〉

)
. (3.40)

Recall that a linear program can be solved in O(n3〈 (LP) 〉) arithmetic operations5

by interior-point methods, see, e.g., [122, 244, 260, 26] (assumingm ≤ n). Therefore,
to improve this asymptotic bound by means of our reduction, an `1-solver would
be required to need less than O((n2/m)〈 (3.29) 〉) arithmetic operations (assuming
that the running time of constructing the instance (3.29) from (LP) is insignificant
in comparison, which holds true under Assumption 3.16 at least).
Typically, (first-order) `1-solvers rely on matrix-vector multiplication (at least

one per iteration), whose cost dominates the overall iteration complexity. With the
(n+1)×(n+m+1) matrix from the instance (3.29), one such multiplication requires

5The bound O(n3〈 (LP) 〉) pertains to reaching an approximately optimal solution, using
O(〈 (LP) 〉)-bit precision arithmetic, that is sufficiently close to an exact optimum to allow
crossing over to an optimal basic solution (see, e.g., [187, 30] or [244, Section 9]). It holds if the
LP data is integer, which, given rational data, can be assumed w.l.o.g. (otherwise, appropriate
scaling achieves it); thus, in the discussion to follow, we implicitly make this assumption (as
well as m ≤ n, cf. Remark 3.21).

112 Chapter 3. Solving Basis Pursuit

(n+1)m+n+1 ∈ O(nm) elementary operations involving matrix and vector entries
(note that multiplication with I only needs n+ 1 operations instead of (n+ 1)2 for
general, fully dense (n + 1) × (n + 1) matrices). Thus, let us assume the iteration
complexity of an `1-solver (applied to (3.29)) to be bounded generally as O(nm).
Consequently, the general bound O(n3〈 (LP)〉) for linear programming could be im-
proved (based on (3.40)) if the applied `1-solver took only O(((n/m2)〈 (3.29) 〉)1−ε)

iterations6 to solve (3.29), for some constant ε ∈ (0, 1]:

O
((

n
m2 〈 (3.29) 〉

)1−ε · O(nm)
)
⊆ O

(
nm
(
n2

m 〈 (LP) 〉
)1−ε) ⊂ O(n3〈 (LP) 〉

)
.

To the best of our knowledge, no algorithms for (P1) are known that meet these
specific requirements in general. Regarding, in particular, the `1-solvers listed in
Section 3.2, the Homotopy method disqualifies due to its exponential worst-case
complexity, and `1-Magic and SolveBP/PDCO are themselves interior-point meth-
ods applied to LP reformulations of (P1) (admittedly, this specialization might allow
to refine the respective complexity analyses w.r.t. the general case; we are, however,
not aware of any detailed investigation of this aspect). For SPGL1, YALL1 and
ISAL1, convergence to the optimum is known. Note that, since (3.29) can itself
be written as an LP, one does not need to perform an infinite number of iterations
when applying these methods. Instead, similarly to interior-point LP methods, we
could terminate once a sufficiently accurate solution is reached, and then cross-over
to an optimal basic solution (provided dual information is available, cf. [187, 30]).
However, it is not clear from the existing convergence results whether the precision
required for cross-over could be reached within O(((n/m2)〈 (3.29) 〉)1−ε) iterations
by any of the aforementioned algorithms.
A method with known estimates on the iteration number required to reach a

certain accuracy is FISTA [18]. Although not directly applicable to (P1), FISTA
can solve problem (QPλ), i.e., min 1

2‖Ax− b‖
2
2 + λ‖x‖1, whose optimal solution x∗λ

converges to that of (P1) as λ → 0 (cf. Section 3.2.2). However, no a priori upper
bound on λ is known that guarantees a prescribed precision (w.r.t. solving BP),
see [245, 113].
Furthermore, recall that the Homotopy method sometimes exhibits the “k-step

solution property”, i.e., it needs only k iterations if the (unique) optimal Basis
Pursuit solution has k nonzero entries and k is sufficiently small. If this was the
case for the instance (3.29), then (LP) could be solved in O(nmk) time (plus that
needed for the reduction) by applying the Homotopy method to (3.29), cf. [93].
Unfortunately, this situation can also hardly be guaranteed a priori, since neither
6Clearly, it would suffice to have O(n1−ε1m−2−ε2 〈 (3.29) 〉1−ε3) with at least one εi > 0. For
simplicity, we give the argument using just one ε ∈ (0, 1] for all terms, and also neglect other
subtleties such as possible finite-precision arithmetic requirements.

3.5. Equivalence of Basis Pursuit and Linear Programming 113

does one usually have prior knowledge of the solution sparsity for BP problems,
nor is it clear what properties of the (LP) solution or instance a certain sparsity of
solutions of (3.29) possibly translates into.
Thus, to summarize the above discussion, the reduction from a linear program to

a Basis Pursuit instance seems unlikely to lead to better asymptotical running time
bounds for linear programming in general. Nevertheless, it shows that, in principle,
one could indeed solve arbitrary LPs with any BP-solver.

Remark 3.21. The interior-point methods from, e.g., [122, 244, 260], require the
original LP to be in standard equality form min{ c>x : Ax = b, x ≥ 0 }, for which
assuming m ≤ n does not lead to a loss of generality (additional equations can easily
be eliminated, or shown to induce infeasibility, a priori, via Gaussian elimination,
cf. [128]). Therefore, a running time bound like O(((m + n)n2 + (m + n)1.5n))L)

(see [244]) is usually shortened to O(n3L), where L is the encoding length of the
LP in equality form, not the inequality form (LP). Clearly, it holds that O(L) =

O(〈 (LP) 〉) for the equivalent equality and inequality forms of any linear program.
However, if we are given an LP in equality form, the corresponding inequality

form (LP) can of course have more rows than columns, since each equality is turned
into a pair of inequalities; generally, we could then end up with n ≤ m ≤ 2n. We do
not give a detailed discussion for this case, since arguments completely analogous
to those above can be derived, along the same lines, incorporating estimates for the
general linear programming running time that involve both m and n.

Remark 3.22. Due to the strong duality between (P1) and (D†1) (cf. Remark 3.14
and Lemma 3.11), the optimal objective function values optBP and optLP of (3.29)
and (LP), respectively, are related as

c>x∗ = optLP = K
2 (optBP −M+ c>1).

In contrast, an optimal solution x∗ for (LP) itself can, in general, not be obtained
directly (in closed form) from an optimal solution η∗ for (3.29). This is because our
reduction involves dualization, and so we first need to construct from η∗ an optimal
dual solution ((y∗)>, 1)>, i.e., one for (3.26). Then, x∗ = K

2 (y∗ + 1) optimally
solves (LP), see the beginning of the proof of Theorem 3.17.

In some situations, y∗ = −
(
(I, D)>S∗

)†
sign(η∗S∗), where S

∗ = supp(η∗); e.g., if η∗

is sufficiently sparse (cf. Section 3.1.3). Also, many `1-solvers are of a primal-dual
type, i.e., they also (perhaps implicitly) compute a dual optimal solution as well;
examples are SPGL1 and YALL1, cf. Sections 3.2.5 and 3.2.6, respectively.
In general, however, from a theoretical LP-perspective on (P1) and (D†1), com-

puting y∗ from a given primal-optimal solution η∗ alone may essentially be as hard

114 Chapter 3. Solving Basis Pursuit

as solving the problem (3.29) (written as an LP) from scratch, cf. [187]. Although
this shows that (LP) and (P1) are polynomially equivalent also in the sense that
respective optimal solutions (not only objective values) can be obtained from each
other, it seems undesirable, given that we originally started with an LP in the first
place. Nevertheless, in practice (or average-case scenarios), one can still expect the
knowledge of η∗ and the corresponding optimal objective value to allow for obtain-
ing a dual optimal solution y∗ more efficiently than by a complete resolve of the
problem. For instance, an LP cross-over method relying only on an (approximate)
primal-optimal solution is described and demonstrated to be practically efficient
in [30]. Moreover, one could employ any algorithm for convex feasibility problems
(see, e.g., [16]) to tackle the problem of finding a point satisfying the dual constraints
together with the prescribed (optimal) objective function value.

3.6 Excursion into Basis Pursuit Denoising

So far, we have solely investigated Basis Pursuit in the noisefree case, i.e., (P1). In
the following, we will instead consider the (usually more realistic) situation in which
the measurements are contaminated by noise and the pure BP model becomes ar-
guably less useful. In particular, motivated by the success of the heuristic optimality
check (HOC) in improving solution speed and quality of BP-solvers, we will focus
on HOC variants for the noise-aware `1-minimization problems

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ (Pδ1)

and
min

1

2
‖Ax− b‖22 + λ ‖x‖1. (QPλ)

Throughout this section, we will assume that ‖b‖2 > δ, which rules out the trivial
all-zero solution to (Pδ1). Moreover, we shall assume that in an optimal solution x∗,
the support S∗ of x∗ yields a full-rank submatrix AS∗ , i.e., rank(AS∗) = |S∗| ≤ m.
(Note that—at least in a sparse recovery context—this rank assumption is not partic-
ularly restrictive, since it is part of necessary and sufficient conditions for uniqueness
of optimal solutions of many `1-minimization problems, including (Pδ1) and (QPλ);
see [265].)
The HOC code for (Pδ1) and (QPλ) is available from the same webpage as the one

for (P1) (i.e., http://wwwopt.mathematik.tu-darmstadt.de/spear).

http://wwwopt.mathematik.tu-darmstadt.de/spear

3.6. Excursion into Basis Pursuit Denoising 115

3.6.1 HOC for BP Denoising

Let us start with the standard constrained form of Basis Pursuit Denoising, i.e.,
(Pδ1). Emulating the derivation of HOC for (P1) (cf. Section 3.1), we first regard
the optimality conditions for (Pδ1), which we gather in the following lemma. (This
result is well-known—see, e.g., [173]—so we only roughly sketch the proof.)

Lemma 3.23. A point x∗ 6= 0 is optimal for the Basis Pursuit Denoising prob-
lem (Pδ1) if and only if ‖Ax∗ − b‖2 = δ and there exists some µ∗ > 0 such that
−µ∗A>(Ax∗ − b) ∈ ∂‖x∗‖1.

Proof. Clearly, x∗ 6= 0 can only be optimal if ‖b‖2 > δ, and then, in particular, x∗ lies
on the boundary of the feasible setXδ := {x : ‖Ax− b‖2 ≤ δ }, i.e., ‖Ax∗ − b‖2 = δ.
The latter follows from the complementarity condition µ∗(‖Ax∗ − b‖2 − δ) = 0

(cf., e.g., [221, Theorem 3.34]), since µ∗ > 0, as shown below. The second condition
can be obtained by computing the normal cone toXδ at x∗ and applying Lemma 1.4,
or by differentiating the Lagrangean function associated with (Pδ1); µ∗ ≥ 0 is a
requirement (since µ∗ is the Lagrange multiplier linked to an inequality constraint)
and it is easily seen that whenever x∗ 6= 0, 0 /∈ ∂‖x∗‖1 and therefore, µ∗ > 0.

Moreover, recall from Lemma 1.5 that the dual problem of (Pδ1) is given by

max −b>y − δ‖y‖2 s.t. ‖A>y‖∞ ≤ 1. (Dδ1)

Lemma 3.24. To an optimal primal solution x∗ 6= 0 of (Pδ1) and the corresponding
Lagrange multiplier µ∗, a dual optimal solution is found as y∗ = µ∗(Ax∗ − b).

Proof. Since −µ∗A>(Ax∗ − b) ∈ ∂‖x∗‖1 (by Lemma 3.23) and x∗ 6= 0, it holds that
‖A>y∗‖∞ = ‖µ∗A>(Ax∗ − b)‖∞ = 1. Thus, y∗ is dual feasible. Moreover, we have
‖x∗‖1 + b>y∗ + δ‖y∗‖2 = −µ∗(Ax∗ − b)>Ax∗ + µ∗(Ax∗ − b)>b + µ∗δ‖Ax∗ − b‖2 =

−µ∗‖Ax∗ − b‖22 + µ∗δ2 = 0, i.e., the duality gap vanishes, which shows that y∗ is
optimal.

The general HOC idea is to construct a primal-dual optimal pair from a given
candidate solution x. For (Pδ1), we need to derive the Lagrange multiplier as well in
order to relate primal and dual solutions (via Lemma 3.24).
To that end, note that from Lemma 3.23, an explicit expression for µ∗ is imme-

diate: Since x∗ 6= 0, ‖h‖∞ = 1 for any subgradient h ∈ ∂‖x∗‖1. Thus,

µ∗ =
1

‖A>(Ax∗ − b)‖∞
. (3.41)

116 Chapter 3. Solving Basis Pursuit

However, it should be noted that (3.41) incorporates the actual values of x∗, whereas
HOC for (P1) uses only support and sign information, making the approach robust to
deviations in the vector components. Fortunately, we can devise such a “magnitude-
independent” HOC scheme for (Pδ1) as well:
Note that, for an arbitrary (fixed) optimal solution x∗ of (Pδ1), this problem can

be equivalently rewritten as the reduced-dimensional problem

min ‖z‖1 s.t. ‖AS∗z − b‖2 ≤ δ, sign(z) = sign(x∗S∗), (3.42)

Clearly, the optimal solution to this problem is z∗ = x∗S∗ . In particular, since sign(z)

is fixed, ∂‖z‖1 = {sign(x∗S∗)} for any feasible point z of (3.42), and the optimality
conditions reduce to

−µ∗zA>S∗(AS∗z∗ − b) = sign(x∗S∗), ‖AS∗z∗ − b‖2 = δ, and µ∗z ≥ 0.

Since rank(AS∗) = |S∗| ≤ m (by assumption), the first condition yields

z∗ =
(
A>S∗AS∗

)−1
(
A>S∗b−

1

µ∗z
sign(x∗S∗)

)
.

Plugging this into the second condition, some basic calculations (together with the
requirement µ∗z ≥ 0) reveal that

µ∗z =

√√√√ sign(x∗S∗)
>
(
A>S∗AS∗

)−1
sign(x∗S∗)

b>AS∗
(
A>S∗AS∗

)−1
A>S∗b− ‖b‖22 + δ2

> 0.

This expression does indeed not contain the actual entries of x∗S∗ anymore. Since
A>S∗AS∗ is symmetric positive definite (under our rank assumption), we can avoid
building A>S∗AS∗ (and its inverse) explicitly by computing the unique vectors p∗

and q∗ such that A>S∗AS∗p
∗ = sign(x∗S∗) and A

>
S∗AS∗q

∗ = A>S∗b by iterative methods
like CG, and then µ∗z as

µ∗z =

√
sign(x∗S∗)

>p∗

b>AS∗q
∗ − ‖b‖22 + δ2

.

In particular, note that z∗ = q∗ − (1/µ∗z)p
∗.

Replacing x∗ and S∗ by respective candidates x and S yields our HOC for (Pδ1),
which we summarize in Algorithm 3.3.
The derivation above immediately yields the following result concerning HOC

success.

3.6. Excursion into Basis Pursuit Denoising 117

Algorithm 3.3 Heuristic Optimality Check (HOC) for (Pδ1)
Input: matrix A, noise estimate δ > 0, measurement vector b (‖b‖2 > δ), vector x
1: deduce candidate (approx.) support S from x
2: compute approximate solution p̂ to A>SAS p = sign(xS)
3: compute approximate solution q̂ to A>SAS q = A>S b
4: define Lagrange multiplier estimate

µ̂ :=

√
sign(xS)>p̂

b>AS q̂ − ‖b‖22 + δ2

5: define primal solution x̂ with x̂Sc := 0 and x̂S := q̂ − 1
µ̂ p̂

6: if ‖Ax̂− b‖2 ≈ δ then
7: define dual solution ŷ := µ̂(Ax̂− b)
8: if ‖A>ŷ‖∞ ≈ 1 and (‖x̂‖1 + b>ŷ + δ‖ŷ‖2)/‖x̂‖1 ≈ 0 then
9: return “success”

Theorem 3.25. Let x∗ 6= 0 denote an optimal solution of (Pδ1) with support S∗

such that rank(AS∗) = |S∗|, and let a candidate solution x ∈ Rn be given. Then,
under exact arithmetic, HOC (Algorithm 3.3) with input (A, b, δ, x) returns “success”
with x̂ = x∗ if S = S∗ and sign(xS) = sign(x∗S∗).

In our implementation of Algorithm 3.3, we use the CG method to approximately
solve the equation systems involving A>SAS ; we allow a maximum of 25 CG itera-
tions. Moreover, the tolerances for comparisons (Steps 6 and 8) are set to 10−3 for
primal and dual feasibility, and to 10−6 for the relative duality gap evaluation. We
allow more flexibility with respect to feasibility because otherwise, the inaccuracy
induced by p̂ and q̂ may apparently prevent correct optimality detection. (More-
over, note that in CS practice, δ is typically only an educated guess at the true
noise level, so one might argue that primal feasibility needs not be handled very
strictly—especially if a slightly larger violation allows for a sparser solution.) This
effect can be alleviated to some degree by performing more CG iterations to com-
pute p̂ and, in particular, q̂. (The rather quick CG convergence for systems with
sign-vector right hand sides observed in case of the original BP-HOC applies to the
computation of p̂ as well.) However, more CG iterations naturally lead to a larger
overhead. Thus, one has to bear in mind a certain trade-off between the (possible)
extra running time induced by integrating HOC and the reliability of HOC success
claims. The given settings seem to achieve an agreeable balance in this regard, but
can possibly be improved.
In fact, the inexactness of computations (in combination with larger tolerances)

apparently also makes false-positive “success” declarations possible, in cases in which

118 Chapter 3. Solving Basis Pursuit

S ⊂ S∗ or if S contains most, but not all, indices from S∗, and some from (S∗)c.
However, judging from the computational experiments we will discuss below, this is a
rare occurrence (with the above-described settings). When S ⊃ S∗, we observed that
HOC also sometimes claims success—in such cases, one can usually obtain S∗ exactly
by an additional thresholding sweep of x̂; empirically, the threshold 10−6 ‖x̂‖1 seems
to work quite well in this respect.

3.6.2 HOC for `1-Regularized Least-Squares

The problem that was originally called Basis Pursuit Denoising (cf. [58]) reads

min
1

2
‖Ax− b‖22 + λ ‖x‖1, (QPλ)

and is often preferred because it is generally easier to solve than the constrained
problem (Pδ1). Another common name for (QPλ) is essentially a description of its
objective: `1-regularized least-squares; we will use this denomination to distinguish
it from (Pδ1).
The (necessary and sufficient) first-order optimality condition for (QPλ) looks

very similar to that of (Pδ1) (see, e.g., [173]):

− 1

λ
A>(Ax∗ − b) ∈ ∂‖x∗‖1.

Note that this actually reveals the implicit relationship between the two problem
parameters that must hold for the respective solutions of (QPλ) and (Pδ1) to be iden-
tical: λ then is the reciprocal value of the optimal Lagrange multiplier µ∗ associated
with (Pδ1), which of course depends on δ; see also [245, 256, 173].
From the optimality condition, we have, in particular, that for an optimal solu-

tion x∗ with support S∗, it holds that

(A>(Ax∗ − b))S∗ = A>S∗(AS∗x
∗
S∗ − b) = −λ sign(x∗S∗)

and ‖A>(Ax∗ − b)‖∞ ≤ λ. Moreover, we have the following result (see also,
e.g., [259]).

Lemma 3.26. The dual problem of (QPλ) is

max −b>y − 1

2
‖y‖22 s.t. ‖A>y‖∞ ≤ λ,

and if x∗ is a primal optimal solution, then y∗ = Ax∗− b is a dual optimal solution.

3.6. Excursion into Basis Pursuit Denoising 119

Algorithm 3.4 Heuristic Optimality Check (HOC) for (QPλ)
Input: matrix A, regularization parameter λ > 0, measurement vector b, vector x
1: deduce candidate (approx.) support S from x
2: define primal solution x̂ with x̂Sc := 0 and x̂S an approximate solution to
A>SAS z = A>S b− λ sign(xS).

3: define dual solution ŷ := (Ax̂− b)
4: if ‖A>ŷ‖∞ ≈ λ and (‖x̂‖1 + b>ŷ + 1

2‖ŷ‖
2
2)/‖x̂‖1 ≈ 0 then

5: return “success”

Proof. We obtain the dual problem via Fenchel-Rockafellar duality (see Lemma 1.3),
noting that the conjugate functions of f(x) = λ‖x‖1 and g(x) = 1

2‖x− b‖
2
2 are

f∗(y) = ι{ z : ‖z‖∞≤λ }(y) and g∗(y) = b>y+ 1
2‖y‖

2
2, respectively. Let x∗ be a (primal-)

optimal solution of (QPλ), and set y∗ := Ax∗ − b. Then, completely analogously to
the proof of Lemma 3.24, one can show dual feasibility of y∗ and that the duality
gap vanishes.

The fact that λ is a given part of any (QPλ) instance simplifies the HOC proce-
dure, which otherwise is analogous to that for (Pδ1) (where we first have to compute
the associated Lagrange multiplier). Furthermore, (QPλ) is unconstrained, so we do
not need to concern ourselves with primal feasibility. We summarize the approach
in Algorithm 3.4.
In our implementation, we again employ at most 25 CG iterations to determine x̂S ,

and use tolerances 10−3 for (dual) feasibility and 10−6 for the duality gap check.
(The remarks we made about HOC for (Pδ1) regarding the trade-off between the
accuracy of the approximate solution computed by the CG method and the possible
overhead induced by HOC—in combination with tolerance settings and possible
false-positive “success” declarations—apply similarly to Algorithm 3.4.)
Moreover, we obtain the following basic theoretical success guarantee.

Theorem 3.27. Let x∗ 6= 0 denote the optimal solution of (QPλ) with support S∗

such that rank(AS∗) = |S∗| ≤ m, and let a candidate solution x ∈ Rn be given.
Then, under exact arithmetic, HOC (Algorithm 3.4) with input (A, b, λ, x) returns
“success” with x̂ = x∗ if S = S∗ and sign(xS) = sign(x∗S).

Remark 3.28. It is noteworthy that HOC for (QPλ) bears a strong resemblance to
the semismooth Newton method proposed in [127]. Here, we try to prove optimality
of the solution of the equation system in Step 2 via duality arguments, whereas
in [127, Algorithm 2], this solution is used to compute a new support estimate
(or “active set”) for the next iteration. The semismooth Newton method is locally
superlinearly convergent and the experiments in [127] show that a sudden drop in

120 Chapter 3. Solving Basis Pursuit

the error occurs at some iteration, indicating (near-)optimality of the current active
set. This “jump” to a high accuracy solution is precisely what we hope to achieve
by using HOC and can indeed be explained along the same lines as our derivation.
The main drawback of the semismooth Newton algorithm is that convergence is

only guaranteed if the starting point is sufficiently close to the optimum, which can
be hard to ensure a priori However, the method can be embedded in a globally
convergent algorithm by multidimensional filter techniques, see [188] for details.

3.6.3 Numerical Experiments

In the following, we demonstrate HOC in the setting of the denoising problems (Pδ1)
and (QPλ) with a few computational experiments.
There exists a broad variety of algorithms and implementations for (QPλ) and

(although fewer) for (Pδ1). Here, for simplicity, we will only consider solver packages
that already participated in our solver comparison for pure Basis Pursuit, (P1).
Note that SoPlex is a pure LP solver, and while Cplex can handle quadratic

constraints, our wrapper code currently does not support this feature; therefore,
we exclude these solvers here. SolveBP/PDCO and `1-Homotopy can solve the
regularized version (QPλ), whereas (Pδ1) can be solved by `1-Magic, SPGL1 and
YALL1; moreover, our own solver ISAL1 can, in principle, be adapted to handle (Pδ1)
as well (details will be given in Section 4.6, see also Section 4.5.3).
In the following, we will disregard YALL1 due to its unsatisfactory performance

for pure BP and because a few tentative tests for the denoising variant were similarly
disappointing. Moreover, the ISAL1 code for (Pδ1) is presently still at a prototypical
stage: The many algorithmic parameters of ISAL1 were tuned for solving (P1) via
extensive benchmarking—such benchmark tests (in particular, also for the param-
eters that control the approximate projections) have yet to be performed for the
denoising variant in order to achieve some degree of competitiveness. Since here, we
do not wish to rigorously compare solvers for BP Denoising but to illustrate HOC in
this context, we save this effort for the future, and instead impose some restrictions
on our experiments with ISAL1; we will remark more on this aspect later.

3.6.3.1 Experimental Setup

We reused the matrices A and solutions x∗ from our BP test set (see Section 3.3)
to construct—with L1TestPack, cf. [173]—new right hand side vectors b such
that each x∗ is the unique optimum for the corresponding (Pδ1) instance with
δ = ‖Ax∗ − b‖2. In fact, L1TestPack actually constructs instances for (QPλ) for

3.6. Excursion into Basis Pursuit Denoising 121

a given λ value, and δ can then be derived as the residual norm w.r.t. the solu-
tion x∗. Therefore, conveniently, we can use the same instances also for (QPλ).
Since the construction routines from L1TestPack take an unreasonably long time
for the larger instances (for A with 2048 or more rows), we excluded these, which
leaves 444 data sets (A, x∗) to begin with.
We constructed two sets of 444 instances each, using λ = 0.01 for the first and

λ = 10 for the second set. This implies that the values of δ are smaller in the first
part (about 0.07 on average, min/max 0.025/0.215, median 0.06) and larger in the
second (average 71.09, min/max 24.47/215.03, median 60.49). Thus, in total, we
obtain 888 instances (A, b, δ, λ) with known unique (and exactly sparse) optima x∗

of (Pδ1) and (QPλ), respectively. Recalling the way we originally chose the x∗ vectors,
note that half of each part with small and large λ exhibits high and low dynamic
ranges of the solutions. (However, clearly, the two sets are not independent, since
we started the construction from the same original data (A, x∗) and then simply
used different λ values.)
As we did for the noiseless setup, we integrated the suitable denoising version of

HOC into each solver and assess its potential by comparing results without and
with HOC on the given test set. For the interior-point methods `1-Magic and
SolveBP/PDCO, HOC is again executed in every iteration. For `1-Homotopy and
SPGL1, we tried different frequencies for the HOC calls, testing the same intervals
as for BP (see Section 3.1.2, page 63); the findings of these tests are reported below.
In ISAL1 we kept the default HOC frequency R = bm/100c from the code version
for (P1).
The support estimations for HOC are performed in the same fashion as before, see

Section 3.1.2, with one exception: In SPGL1, the active set indices that worked well
as approximate supports for (P1) did not seem to be a sensible choice w.r.t. HOC
for (Pδ1); thus, we estimate the supports by the same hard-thresholding strategy as
in `1-Magic, namely S := { j ∈ [n] : |xj | > 10−6 ‖x‖1 }.
Moreover, we again maintain a “black box” approach and only manually set re-

quired parameters, leaving all optional ones (in particular, the various tolerance
parameters) at their default values. We analyze the computational results similarly
to our rigorous solver comparison for (P1). However, in the denoising context, it
would appear somewhat unnatural to apply equally strict high-accuracy standards
for feasibility and solution quality as before. Thus, we drop the previous distinction
between “solved” and “acceptable” solution, and will be content with any solution x
that reaches the known optimum to within an `2-norm (absolute) distance of 0.1

(which corresponds to the upper accuracy bound for solutions to qualify as accept-
able in Section 3.4). The main goal of HOC should hence be improving the running
time while (at least) achieving an accuracy comparable to what the solver would

122 Chapter 3. Solving Basis Pursuit

reach by itself. (As mentioned earlier, HOC behavior can be steered towards this
aim by adequately tuning the CG accuracy and tolerance parameters.)

3.6.3.2 BP Denoising

We start with the Basis Pursuit Denoising problem (Pδ1), for which we tested HOC
(Algorithm 3.3) integrated into SPGL1, `1-Magic, and ISAL1. The corresponding
results of our experiments are depicted in Figures 3.13, 3.14 and 3.15, respectively
(all running times are geometric means over 3 runs, or 10 runs if the codes were very
fast). We will mostly let these pictures guide our tentative analysis of the influence
of HOC; some supporting statistics are summarized in Table 3.8. In particular, note
that the number of instances used in the experiments are different for each solver
(for reasons we give below) and that the figures have different time and accuracy
scales. Therefore, the results for the three solvers are not directly comparable to
each other, and we focus on the individual effect of integrating HOC.
Starting with `1-Magic, we first remark (again) that the implementation struggles

with numerical issues, cf. Remark 3.9: Like on the (P1) instances, the algorithm quite
often terminates due to errors connected to (at least numerically) incorrect settings
w.r.t. symmetry and positive definiteness for Matlab’s linsolve function. This
issue concerned 62 of the instances constructed with λ = 0.01 (smaller δ values)
and 104 of those with λ = 10 (and larger δ values), i.e., about 14% and 23% of the
respective groups of 444 instances. Here, we kept the original linsolve settings
and exclude the instances on which `1-Magic failed. It is however noteworthy that
with HOC, 22 more small-δ instances and 9 more with large δ value were solved,
i.e., HOC led to early termination (with good approximations of the true solution)
before `1-Magic “crashed”.
On the remaining instances, the large number of green lines in Figure 3.13 suggests

that HOC success quite often leads to early termination. In particular, note that a
significant amount of the green lines has a clear “horizontal component”, indicating
relevant runtime improvements. Moreover, the red lines all appear almost vertical,
which represents small to statistically insignificant overheads. Thus, Figure 3.13
shows that HOC is useful for `1-Magic. Indeed, the data confirms this impression:
On the 382 instances with smaller δ values, integrating HOC into `1-Magic led to
an average relative speed-up of 25.29% (over all instances; the algorithm became
faster on 268 instances, on which the average speed-up is actually 36.59%; the mean
overhead on the remaining instances is 1.26%). For the 340 larger-δ instances, HOC
yields a total speed-up of 17.58%, the version with HOC being faster on 307 instances
(average relative speed-up on these: 19.57%) and introducing an average overhead
of 0.93% on the others.

3.6. Excursion into Basis Pursuit Denoising 123

Table 3.8. Impact of HOC for (Pδ1) on the runtimes of `1-Magic, ISAL1 and SPGL1.

instances # faster avg. speed-up

Solver R small δ large δ small δ large δ small δ large δ

`1-Magic 1 382 340 268 307 25.29% 17.58%

ISAL1 bm/100c 222 222 197 95 41.92% 13.85%

SPGL1 bm/20c 444 444 155 33 2.98% −1.98%
bm/100c 444 444 228 21 −0.09% −10.18%

2 5 10 50 100 500

10
−8

10
−6

10
−4

10
−2

10
0

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(a) Results on instances with small δ

2 5 10 50 100 500

10
−8

10
−6

10
−4

10
−2

10
0

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(b) Results on instances with large δ

Figure 3.13. Results of numerical experiments with HOC for (Pδ1) in `1-Magic. The plots
show running times versus distance to optimum in loglog scale. Black crosses mark the
results of `1-Magic alone and are connected by lines to the corresponding dots marking
results obtained with HOC (Algorithm 3.3) integrated into the solver. The colors indicate
whether HOC led to a speed-up (green) or an overhead (red), respectively. Blue diamonds
mark results obtained only with HOC, where `1-Magic itself aborted without returning a
solution.

From Figure 3.13, we also see that HOC sometimes yields a less accurate solu-
tion on the small-δ instances, but hardly ever for the other test set part. (In fact,
note that `1-Magic itself is already fairly accurate, w.r.t. our acceptance tolerance.)
Accuracy improvement occurs more often, and is more pronounced, on the larger-δ
test instances. Indeed, the variance of the differences between the distances to x∗ ob-
tained without and with HOC, respectively, is of the order 10−6 for small-δ problems
and about 0.028 for those with large δ values.

124 Chapter 3. Solving Basis Pursuit

0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(a) Results on instances with small δ, R =
⌊
m
20

⌋ 0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(b) Results on instances with large δ, R =
⌊
m
20

⌋

0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(c) Results on instances with small δ, R =
⌊
m
100

⌋ 0.01 0.03 0.1 1 10 30 60

10
−6

10
−3

10
0

10
3

10
5

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(d) Results on instances with large δ, R =
⌊
m
100

⌋
Figure 3.14. Results of numerical experiments with HOC for (Pδ1) in SPGL1 (with
different HOC frequencies R). The plots show running times versus distance to optimum
in loglog scale. Black crosses mark the results of SPGL1 alone and are connected by lines
to the corresponding dots marking results obtained with HOC (Algorithm 3.3) integrated
into the solver. The colors indicate whether HOC led to a speed-up (green) or an overhead
(red), respectively.

Despite the obvious benefit of integrating HOC for (Pδ1) into `1-Magic to im-
prove runtimes whilst maintaining comparable accuracy—and leaving aside the
error-termination issue—comparing Figures 3.13 and 3.14 immediately shows that
`1-Magic is not competitive with SPGL1; note the different time scales. Indeed, on
the (rather small-scale) test set used here, SPGL1 is very fast and reliably produces
good approximate solutions, albeit with a few outliers on which it fails.

3.6. Excursion into Basis Pursuit Denoising 125

Hence, it comes as no surprise that (on average) HOC almost always introduces
an overhead in SPGL1. In fact, an average relative speed-up was only achieved on
the smaller-δ instances for the three lowest HOC frequencies R. The best choice here
turned out to be R = bm/20c (2.98% speed-up). With R = bm/100c, the variant
with HOC was most often faster than the original code—on 228 of the 444 small-δ
instances (R = bm/20c: 155)—but gives an overall average overhead of 0.09%.
Therefore, we will discuss these two HOC frequencies.
Looking at Figure 3.14(a) and (c), we observe that the distances to the known op-

tima x∗ are improved by HOC in many cases, but also sometimes degraded slightly,
though all points then remained within our accuracy acceptance tolerance. The
variance of the per-instance differences between the distances to x∗ for the points
computed by SPGL1 without or with HOC, respectively, is around 0.009 for all
tested HOC frequencies. The figure also clearly shows that with R = bm/20c, the
overhead for HOC is naturally much smaller than with R = bm/100c, but that more
frequent HOC calls specified by the latter choice lead to HOC success in many more
cases. Unfortunately, the overall overheads then become dominant.
On the instances with larger δ values, SPGL1 is even faster (but also consider-

ably less accurate). Consequently, here, all HOC frequencies introduce an overhead
on average and the number of times an actual improvement was achieved is even
less, cf. Table 3.8. Given that the solver is so fast, it is hard to tell whether the
time differences are statistically significant at all—both speed-ups and overheads
could just be due to normal fluctuations. However, particularly in the regime where
SPGL1 is extremely fast (say, below one second), the (mostly red) lines show that
the accuracy is significantly improved by HOC (at least with R = bm/100c) with-
out sacrificing notable amounts of running time. In fact, they never changed for the
worse. Therefore, HOC may arguably still be worth the slight increase in runtime.
Moreover, note that the higher frequency of HOC calls (R = bm/100c) again dra-
matically increases the number of instances for which HOC claims success—compare
the respective numbers of relatively long lines leading into the high-accuracy region
in Figures 3.14(d) and 3.14(b).
Regarding the Denoising-ISAL1 prototype, we only consider instances with 512

rows since its performance seems to degrade strongly the larger the problem dimen-
sions become. Nevertheless, this actually leaves half of the instances—i.e., we still
have 222 instances with small and large δ values, respectively—so the experiments
should give a viable indication of how HOC influences this solver.
For both test set parts, Figure 3.15 immediately shows that HOC can improve

speed and accuracy of ISAL1 significantly: We see lots of (not very steeply sloped)
green lines that lead down to very agreeable solutions. The corresponding numbers
in Table 3.8 support this impression with quite impressive average speed-ups of

126 Chapter 3. Solving Basis Pursuit

0.5 1 5 10 50 100 300
10

−9

10
−6

10
−3

10
0

10
3

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(a) Results on instances with small δ

0.5 1 5 10 50 100 300
10

−9

10
−6

10
−3

10
0

10
3

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(b) Results on instances with large δ

Figure 3.15. Results of numerical experiments with HOC for (Pδ1) in ISAL1. The plots
show running times versus distance to optimum in loglog scale. Black crosses mark the
results of ISAL1 alone and are connected by lines to the corresponding dots marking results
obtained with HOC (Algorithm 3.3) integrated into the solver. The colors indicate whether
HOC led to a speed-up (green) or an overhead (red), respectively.

about 42% and 14% on the small- and large-δ test set parts, respectively.
Moreover, it is noteworthy that ISAL1 in its present untuned form (but with

HOC), already beats `1-Magic, as becomes apparent from comparing the scales of
Figures 3.15 and 3.13 together with the shapes of the respective point clouds. More
precisely, on the respective subsets of the two groups of 222 instances on which the
latter solver did not fail to even produce a solution, the overall geometric means of
the runtimes are about 12.23 and 5.06 seconds for ISAL1 (with HOC: 6.18 and 3.92)
and 11.56 and 17.02 for `1-Magic (with HOC: 8.31 and 13.72), respectively.
Thus, to summarize, HOC for (Pδ1) (Algorithm 3.3) has a notable influence on all

three tested solvers. Whereas it obviously helps ISAL1 and `1-Magic, the use within
SPGL1 is not quite clear. Here, HOC only sometimes leads to a speed-up but can
significantly improve accuracy. Thus, the results here indicate that there might be
something to gain by integrating HOC in SPGL1, although many more experiments
(preferably large-scale) are necessary before a final answer can be given.

3.6.3.3 `1-Regularized Least-Squares

For (QPλ), we integrated HOC (Algorithm 3.4) into `1-Homotopy and
SolveBP/PDCO. For the homotopy method, we again tested the previously specified
different HOC frequencies and found that none of them leads to an overall average

3.6. Excursion into Basis Pursuit Denoising 127

Table 3.9. Impact of HOC for (QPλ) on the runtimes of `1-Homotopy and
SolveBP/PDCO.

instances # faster avg. speed-up

Solver R small δ large δ small δ large δ small δ large δ

`1-Homotopy bm/10c 444 444 104 185 −1.93% −0.06%

SolveBP/PDCO 1 444 444 226 162 1.52% 5.67%

0.5 1 5 10 50 90

10
−6

10
−3

10
0

10
3

10
6

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(a) Results on instances with λ = 0.01

0.5 1 5 10 50 90

10
−6

10
−3

10
0

10
3

10
6

Running Times [sec]

‖x̄
−

x
∗
‖ 2

(b) Results on instances with λ = 10

Figure 3.16. Results of numerical experiments with HOC for (QPλ) in SolveBP/PDCO.
The plots show running times versus distance to optimum in loglog scale. Black crosses
mark the results of SolveBP alone and are connected by lines to the corresponding dots
marking results obtained with HOC (Algorithm 3.4) integrated into the solver. The colors
indicate whether HOC led to a speed-up (green) or an overhead (red), respectively.

speed-up on the test set considered here. Therefore, we show the results for the
experiments with the least frequent number of HOC calls (i.e., R = bm/10c). The
results for SolveBP/PDCO are depicted in Figure 3.16, those for `1-Homotopy in
Figure 3.17; see also Table 3.9.
Starting with SolveBP, the impression we gain from the two plots in Figure 3.16

is that HOC for (QPλ) apparently often leads to higher-accuracy solutions and at
the same time slightly reduces the running times. In particular, it can sometimes
identify the optimum from a very far-off point, see the long (near-vertical) red lines
in Figure 3.16(b) and note the scale on the vertical axis.
For `1-Homotopy, most claims or indications of becoming faster or slower by

128 Chapter 3. Solving Basis Pursuit

0.02 0.1 1 4
10

−7

10
−5

10
−3

Running Times [sec]

‖
x̄
−

x
∗
‖ 2

(a) Results on instances with λ = 0.01

0.02 0.1 1 4
10

−7

10
−5

10
−3

Running Times [sec]

‖
x̄
−

x
∗
‖ 2

(b) Results on instances with λ = 10

Figure 3.17. Results of numerical experiments with HOC for (QPλ) in `1-Homotopy.
The plots show running times versus distance to optimum in loglog scale. Black crosses
mark the results of `1-Homotopy alone and are connected by lines to the corresponding
dots marking results obtained with HOC (Algorithm 3.4) integrated into the solver. The
colors indicate whether HOC led to a speed-up (green) or an overhead (red), respectively.

using HOC (with R = bm/10c) will essentially be meaningless, given how fast the
solver is (always below 4 seconds, on all instances). Also, there is no improvement
regarding solution accuracy; `1-Homotopy already is very accurate. The only aspect
of Figure 3.17 that stands out is the one long red line, which corresponds to some
instance for which HOC—introducing a minor overhead—actually produces a worse
approximation of the optimum.
In fact, for the experiments with `1-Homotopy, a closer inspection reveals that

HOC literally has no chance to be successful for the majority of instances: The
number of homotopy iterations is equal to the optimal solution sparsity on 72% of the
test set with λ = 0.01, and on almost 78% of instances with λ = 10. In these cases,
`1-Homotopy reconstructs the optimal support adding one index per iteration—
then, of course, HOC cannot (correctly) claim success, because all it encounters are
subsets of the true optimal support. (Note also that the aforementioned instance
corresponding to the long red line in Figure 3.17 demonstrates a case where HOC
gives a false-positive answer, albeit still producing a solution with error below 10−3.)
Thus, there seems little hope for HOC to become useful to `1-Homotopy—at least

not on instances with very sparse solutions, and for fairly small-scale problems such
as those we considered in the above experiments. On the other hand, SolveBP does
profit from HOC.
Combined with the results for (Pδ1) discussed earlier, more experiments are clearly

3.6. Excursion into Basis Pursuit Denoising 129

needed to investigate whether the appropriate denoising variant of HOC may be-
come (more) useful for `1-Homotopy or SPGL1, respectively. Nevertheless, the
HOC idea may be a useful tool for some algorithms, as the results for `1-Magic,
SolveBP/PDCO and ISAL1 indicate.

CHAPTER 4
ISA Framework for Nonsmooth

Convex Optimization

In this chapter, we leave the Compressed Sensing regime for a while and instead
focus on general nonsmooth convex constrained optimization problems. We intro-
duce a new algorithmic framework that extends the classical projected subgradient
method. Since—unlike in the standard approach—the iterates of our algorithm may
become infeasible (due to admitting approximate instead of the usual exact projec-
tions), we call our framework Infeasible-Point Subgradient Algorithm (ISA). After
investigating convergence properties and extensions of several variants of our algo-
rithm, we eventually return to the CS theme by discussing the application of ISA
to the Basis Pursuit problems (P1) and (Pδ1) (and some variants closely related to
the latter).
This chapter consists largely of a revised (extended and rearranged) version of

the paper [175] (joint work by the author with Dirk Lorenz and Marc Pfetsch). We
complement these parts (mainly Sections 4.1–4.4) by further results and details, in
particular regarding variable target value versions of ISA (Section 4.4.3) and the
specialization ISAL1 to `1-minimization problems (Section 4.6; parts were already
presented in [174]). Moreover, we give additional examples of the adaptive approx-
imate projection operator used in the ISA framework (Sections 4.5.2 and 4.5.3)
and provide a more thorough treatment of those previously discussed in [175] (see
Sections 4.5.1 and 4.5.4).

131

132 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

4.1 Motivation, Scope and Preliminaries

We consider the following general setup: Let f : Rn → R ∪ {∞} be a con-
vex function (not necessarily differentiable), dom f := {x : f(x) <∞}, and let
X ⊂ int(dom f) ⊆ Rn be a closed convex set. (Recall that this implies that f is
continuous on X.) We are interested in solving the minimization problem

min f(x) s.t. x ∈ X. (4.1)

Throughout, we will assume (4.1) to have a nonempty set of optima

X∗ := Argmin{ f(x) : x ∈ X }.

An optimal point will be denoted by x∗ and its objective function value f(x∗) by f∗.
Similarly, for a sequence (xk) of points, the corresponding sequence of objective
function values will be abbreviated by (fk) = (f(xk)).
The projected subgradient method [228] is a classical algorithm for solving prob-

lem (4.1). One iteration consists of taking a step of size αk along the negative
direction of an arbitrary subgradient hk of the objective function f at the current
point xk and then computing the next iterate by projection (PX) onto the feasible
set X:

xk+1 = PX(xk − αk hk). (4.2)

Over the past decades, numerous extensions and specializations of this scheme
have been developed and proven to converge to a minimum (or minimizer, respec-
tively). Well-known disadvantages of the subgradient method are its slow local
convergence and the necessity to extensively tune algorithmic parameters in order
to obtain practical convergence. On the positive side, subgradient methods involve
fast iterations (provided the projections can be performed efficiently) and are easy
to implement. In fact, they have been widely used in applications and form one of
the most popular algorithms for nonsmooth convex minimization.
The main effort in each iteration of the projected subgradient algorithm usually

lies in the computation of the projection PX . Since the projection is the solution of
a (smooth) convex program itself, the required time depends on the structure of X
and corresponding specialized algorithms. Examples admitting a fast projection
include the case in which X is the nonnegative orthant (simply set all negative
entries to zero) or the `1-norm ball {x : ‖x‖1 ≤ r }, onto which any x ∈ Rn can be
projected in O(n) time [246] (see also [96]). The projection is more involved if X is,
for instance, an affine space or a (convex) polyhedron. In such cases, it makes sense
to consider replacing the exact projection PX by an approximation PεX .

4.1. Motivation, Scope and Preliminaries 133

Here, we will, for a given x, approximate the projected point PX(x) adaptively
up to a desired accuracy ε (i.e., we do not uniformly approximate the projection
operator). This will be formalized by computing points PεX(x) with the property
that ‖PεX(x)− PX(x)‖2 ≤ ε for a given ε ≥ 0, see Section 4.1.2 below for a discus-
sion. Algorithmically, the idea is that during the early phases of the subgradient
algorithm we do not need a highly accurate projection, and PεX(x) can be much
faster to compute if ε is larger. In the later phases, one then adaptively tightens the
requirement on the accuracy.
A large part of this chapter focuses on the investigation of convergence properties

of general variants of the projected subgradient method which rely on such adaptive
approximate projections. We study conditions on the step sizes and on the accuracy
requirements εk (in each iteration k) in order to achieve convergence of the sequence
of iterates to an optimal point, or at least convergence of the function values to the
optimum. (Often, in the latter case, the corresponding sequence of points can also
be guaranteed to converge to an optimal solution x∗, although this is not necessarily
the case; see [8] for a discussion.) To that end, we investigate two main variants of
the algorithm. In the first one, the sequence (αk) of step sizes forms a divergent
but square-summable series (

∑
αk = ∞,

∑
α2
k < ∞) and is given a priori. The

second variant uses dynamic step sizes which depend on the difference of the current
function value to a constant target value that estimates the optimal value. We will
also discuss extending the latter variant to a variable target value method.
A crucial difference of the resulting algorithms to the standard method is the

fact that iterates can be infeasible, i.e., are not necessarily contained in X. As a
consequence, the objective function values of the iterates might be smaller than
the optimum, which requires a nonstandard convergence analysis; see the proofs
in Sections 4.2 and 4.3. Moreover, note that our assumption that X is strictly
contained in the interior of the domain of f excludes the case X = dom f , to which
our algorithm cannot be applied. Furthermore, we shall (implicitly) assume that
every iterate lies in dom f , since otherwise no first-order information is available.
This is automatically fulfilled if dom f is the whole space (Rn), or it can be ensured
by requiring that the accuracies εk are small enough; cf. also Part 4 of Remark 4.6.
The rest of this chapter is organized as follows: In the remainder of this section,

we discuss related approaches from the literature regarding subgradient methods
and approximate projections before we recall a few basics and lay the foundations
for our ISA framework. In the subsequent sections, we state the aforementioned
main versions of ISA and provide the respective convergence results, and then dis-
cuss further variants and extensions as well as several examples of suitable adaptive
approximate projection operators. Finally, bridging the general theory of this chap-
ter to Compressed Sensing, we detail the application of ISA to the Basis Pursuit

134 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

problem (and denoising versions), i.e., the ISAL1 algorithm we encountered earlier
in the comparison of `1-solvers (see Chapter 3).

4.1.1 Related Work

The objective function values of the iterates in subgradient algorithms typically do
not decrease monotonically. With the right choice of step sizes, the (projected)
subgradient method nevertheless guarantees convergence of the objective function
values to the minimum, see, e.g., [228, 211, 17, 213].
A typical result of this sort holds for step size sequences (αk) which are non-

summable (
∑∞
k=0 αk = ∞), but square-summable (

∑∞
k=0 α

2
k < ∞). Note that the

second property implies αk → 0 as k →∞.
Another widely used step size rule uses an estimate ϕ of the optimal value f∗, a

subgradient hk of the objective function f at the current iterate xk, and relaxation
parameters λk > 0:

αk = λk
f(xk)− ϕ
‖hk‖22

. (4.3)

The parameters λk are either constant or required to obey certain conditions needed
for convergence proofs. The dynamic rule (4.3) is a straightforward generalization
of the so-called Polyak-type step size rule, which uses ϕ = f∗, to the more practical
case when f∗ is unknown. The convergence results given in [4] extend the work
of Polyak [211, 212] to ϕ ≥ f∗ and ϕ < f∗ by imposing certain conditions on the
sequence (λk). With the ISA framework, we will generalize these results further,
using an adaptive approximate projection operator instead of the (exact) Euclidean
projection in (4.2).
Many extensions of the basic subgradient scheme exist, employing variable target

value rules (see, e.g., [70, 150, 170, 193, 226, 120, 17]), approximate subgradients [25,
2, 166, 75, 229], or incremental projection schemes [201, 193, 154], to name just a few.
In particular, inexact projections have been used previously, probably most promi-

nently for convex feasibility problems in the framework of successive projection
methods. Indeed, the optimization problem (4.1) can, at least theoretically, be cast
as the convex feasibility problem to determine x∗ ∈ X ∩ {x : f(x) ≤ f∗ }. Using
so-called subgradient projections [16] onto the second set leads to a subgradient step

xk+1 := xk − f(xk)− f∗

‖hk‖2
hk,

which corresponds to using a Polyak-type step size without relaxation parameter,

4.1. Motivation, Scope and Preliminaries 135

employing the exact optimal value. As illustrated in [16], this approach leads to
a very flexible framework for convex feasibility problems as well as (nonsmooth)
convex optimization problems; see also [201].
Moreover, [263] considers additive vanishing nonsummable error terms (for both

the projection and the subgradient step) and establishes the existence of a (decaying)
bound on the error terms such that the algorithm will reach a small neighborhood
of the optimal set. However, these bounds are not given explicitly. In contrast, the
results we shall provide regarding ISA contain explicit conditions for the error terms
that guarantee convergence to the optimum.
Another example for the use of inexact projections is the level set subgradient

algorithm in [153], although there all iterates are strictly feasible; a related arti-
cle is [11], where the classical projection is replaced by a variant based on a non-
Euclidean distance-like function.

4.1.2 Types of Adaptive Approximate Projections

In our framework, we require that we can adapt the accuracy of the approximation of
the projected point in an absolute sense, i.e., that for any given accuracy parameter
ε ≥ 0, our adaptive approximate projection PεX : Rn → Rn fulfills

‖PεX(x)− PX(x)‖2 ≤ ε for all x ∈ Rn. (4.4)

In particular, for ε = 0, we have P0
X = PX . Note that PεX(x) does not necessarily

produce a point that is closer to PX(x) (or even to X) than x itself. In fact, this is
only guaranteed for ε < dX(x).
It is worth emphasizing that there are at least three conceptually different ap-

proaches to approximate projections in the present context. The first concept—
prominent, e.g., in the field of convex feasibility problems—uses the idea of approx-
imating the direction towards the feasible set, i.e., the iterates approximately move
towards the constraint set. In the second, related, approach, one projects exactly
onto supersets of the constraint set which are easier to handle, e.g., half-spaces. With
both ideas one can use powerful notions like Fejér-monotonicity (cf. [190]) or the
concept of firmly nonexpansive mappings, see, e.g., [16] and the more recent [168];
see also the “feasibility operator” framework proposed in [201]. To employ either
approach, one exploits analytical knowledge about the feasible set, e.g., that it can
be written as a (sub-)level set of a known and easy-to-handle convex function.
In the third approach, one aims at approximating the projected point without

further restricting the direction. This concept applies, for instance, in situations

136 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

X

x

PX(x)

Figure 4.1. Schematic illustration of the three concepts of approximate projection: The
approximation of the projection direction (or “moving towards the feasible set”) moves
from x along a direction within the shaded cone. The exact projection onto a half-space
(or other superset) containing X moves along the dashed line. The approximation of the
projected point moves from x into a neighborhood of PX(x), the shaded circle.

in which a computational error is made in the projection step (e.g., as in [263])
or when it is impossible or undesirable to handle the constraints analytically, but
a numerical algorithm is available which calculates the projection point up to a
given accuracy. Our adaptive approximate projection (4.4) falls under this third
category. The latter concept is also similar in spirit to the adaptive evaluation
of operators as used, e.g., in adaptive wavelet methods (cf. the APPLY-routine
in [63]). Recently, in [223, 250], several related approaches of the third type have
been studied, based on inexact evaluation of proximity operators (which generalize
the Euclidean projection). In particular, the definition of the “type 1 approximation”
considered in [223] implies (4.4); however, applied to a projection problem, it also
yields feasibility, which (4.4) alone does not guarantee.
Note that, besides the different philosophies and fields of application, none of

the approaches directly dominates the other: On the one hand, one may move
directly towards the feasible set while missing the projection point, and on the
other hand, one may also move closer to the projected point along a direction which
is not towards the feasible set; see Figure 4.1 for an illustration. However, one
can sometimes, for a given rule which approximates the projection direction, find
appropriate half-spaces which contain the feasible set and realize the projection onto

4.1. Motivation, Scope and Preliminaries 137

these half-spaces exactly.
In Section 4.5 we will give several examples of adaptive approximate projections

in the sense of (4.4). With regard to the above discussion, note that Section 4.5.4
contains a concrete example in which the Fejér-type feasibility operator of [201] is
not applicable but the exact projection point can be approximated reasonably well
in the sense of our adaptive approximate projection (4.4).
In the ISA framework, we only consider the third approach to approximate pro-

jections (more precisely, (4.4)) and thus do not use any assumption like nonexpan-
siveness or Fejér-monotonicity for the iteration mapping in our convergence analyses
in the forthcoming sections.
To conclude this section, let us gather some basic inequalities regarding our ap-

proximate projection which will be essential in establishing the results to follow.

Lemma 4.1. For an adaptive approximate projection PεX obeying (4.4), where
X ⊂ Rn is a closed convex set, it holds for any y ∈ Rn and an arbitrary x with
dX(x) ≤ δ that

‖PεX(y)− x‖2 ≤ ‖y − x‖2 + ε+ δ. (4.5)

In particular, for any y ∈ Rn and x ∈ X,

‖PεX(y)− x‖2 ≤ ‖y − x‖2 + ε. (4.6)

Moreover, for any x ∈ X, ε ≥ 0, and for y = z − αh with some z ∈ Rn, α ≥ 0 and
h ∈ ∂f(z) for a convex function f , we have

‖PεX(y)− x‖22 ≤ ‖z − x‖22− 2α(f(z)− f(x)) + (α ‖h‖2 + ε)
2

+ 2 ‖z − x‖2 ε. (4.7)

Proof. Recall that the exact Euclidean projection is nonexpansive; therefore,

‖PX(y)− x‖2 ≤ ‖y − x‖2 ∀x ∈ X. (4.8)

Hence, by (4.4) and (4.8), for the adaptive approximate projection PεX we ob-
tain (4.6) for all x ∈ X and any y ∈ Rn:

‖PεX(y)− x‖2 = ‖PεX(y)− PX(y) + PX(y)− x‖2
≤ ‖PεX(y)− PX(y)‖2 + ‖PX(y)− x‖2 ≤ ε+ ‖y − x‖2.

Moreover, it follows from (4.8) and (4.4) that, for any x with dX(x) ≤ δ,

‖PεX(y)− x‖2 ≤ ‖PεX(y)− PX(x)‖2 + ‖PX(x)− x‖2 ≤ ‖PεX(y)− PX(x)‖2 + δ

≤ ‖PX(y)− PX(x)‖2 + ‖PεX(y)− PX(y)‖2 + δ ≤ ‖y − x‖2 + ε+ δ.

138 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Algorithm 4.1 Predetermined Step Size ISA
Input: a starting point x0, sequences (αk), (εk)
Output: an (approximate) solution to (4.1)
1: initialize k := 0
2: repeat
3: choose a subgradient hk ∈ ∂f(xk) of f at xk
4: compute the next iterate xk+1 := PεkX

(
xk − αkhk

)
5: increment k := k + 1
6: until a stopping criterion is satisfied

Thus, (4.5) holds. Finally, let z ∈ Rn, α ≥ 0, h ∈ ∂f(z), ε ≥ 0 and let y = z − αh.
We obtain (4.7) for any x ∈ X:

‖PεX(y)− x‖22
≤ (‖y − x‖2 + εk)

2
= ‖y − x‖22 + 2 ‖y − x‖2 ε+ ε2

= ‖z − x‖22 − 2αh>(z − x) + α2 ‖h‖22 + 2 ‖y − x‖2 ε+ ε2

≤ ‖z − x‖22 − 2α(f(z)− f(x)) + α2 ‖h‖22 + 2‖z − x‖2 ε+ 2α ‖h‖2 ε+ ε2

= ‖z − x‖22 − 2α(f(z)− f(x)) + (α ‖h‖2 + ε)
2

+ 2 ‖z − x‖2 ε,

where the second inequality follows from the subgradient definition (1.1) and the
triangle inequality.

Note that the above inequalities (4.6), (4.7) and (4.8) hold, in particular, for every
optimal point x∗ ∈ X∗.

4.2 ISA with Predetermined Step Sizes

In the following, we shall discuss the first variant of ISA, in which we assume that
the sequences of step sizes (αk) and projection accuracies (εk) are predetermined
(i.e., given a priori); we obtain Algorithm 4.1.
Throughout this section, let (xk) denote the sequence of points with corresponding

objective function values (fk) and subgradients (hk), hk ∈ ∂f(xk), as generated by
Algorithm 4.1.
Note that while hk = 0 might occur in the course of the iterations, it does not

necessarily imply that xk is optimal, because xk may be infeasible. In such a case,
the adaptive projection (obeying (4.4)) will eventually change xk to a different point
as soon as εk becomes small enough.

4.2. ISA with Predetermined Step Sizes 139

The following is our main convergence result for this variant of ISA, using fairly
standard step size conditions. (The stopping criterion alluded to in the algorithm
statement will be ignored for the convergence analysis. In practical implementations,
one would stop, e.g., if no significant progress in the objective was achieved within
a certain number of iterations.)

Theorem 4.2 (Convergence for predetermined step size sequences). Let the projec-
tion accuracy sequence (εk) be such that

εk ≥ 0,

∞∑
k=0

εk <∞, (4.9)

let the positive step size sequence (αk) be such that

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞, (4.10)

and let the following relation hold:

αk ≥
∞∑
j=k

εj ∀ k = 0, 1, 2, . . . (4.11)

Suppose ‖hk‖2 ≤ H <∞ for all k. Then the sequence of ISA iterates (xk) converges
to an optimal point x∗ ∈ X∗ of problem (4.1).

Remark 4.3. Relations (4.9), (4.10), and (4.11) can be ensured, e.g., by the se-
quences εk = 1/k2 and αk = 1/(k − 1) for k > 1; then, in particular,

∞∑
j=k

εk =

∞∑
j=k

1

j2
≤
∫ ∞
k−1

1

y2
dy =

1

k − 1
= αk.

The proof of convergence of the ISA iterates xk is somewhat more involved than
for the classical subgradient method (as given, e.g., in [228]). This is due to the
additional error terms from adaptive approximate projections as well as the fact
that f(xk) ≥ f∗ is not guaranteed since the iterates may be infeasible.

Proof of Theorem 4.2. Defining

βk :=
(
αk‖hk‖2 + εk

)2
+ 2 ‖xk − x∗‖2 εk,

140 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

we can rewrite (4.7) with x = x∗ ∈ X∗ as

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 − 2αk (fk − f∗) + βk. (4.12)

Thus, we obtain (by applying (4.12) for k = 0, . . . ,m)

‖xm+1 − x∗‖22 ≤ ‖x0 − x∗‖22 − 2

m∑
k=0

(fk − f∗)αk +

m∑
k=0

βk.

Our first goal is to show that
∑∞
k=0 βk is a convergent series. Using ‖hk‖2 ≤ H and

denoting A :=
∑∞
k=0 α

2
k, we get

m∑
k=0

βk ≤ AH2 +

m∑
k=0

ε2
k + 2H

m∑
k=0

αkεk + 2

m∑
k=0

‖xk − x∗‖2 εk.

Let D := ‖x0 − x∗‖2 and consider the last term (without the factor 2):

m∑
k=0

‖xk − x∗‖2 εk

= Dε0 +

m∑
k=1

∥∥Pεk−1

X

(
xk−1 − αk−1h

k−1
)
− x∗

∥∥
2
εk

≤ Dε0 +

m∑
k=1

∥∥Pεk−1

X

(
xk−1 − αk−1h

k−1
)
− PX

(
xk−1 − αk−1h

k−1
)∥∥

2
εk

+

m∑
k=1

∥∥PX (xk−1 − αk−1h
k−1
)
− x∗

∥∥
2
εk

≤ Dε0 +

m∑
k=1

εk−1εk +

m∑
k=1

∥∥xk−1 − αk−1h
k−1 − x∗

∥∥
2
εk

≤ Dε0 +

m−1∑
k=0

εkεk+1 +

m−1∑
k=0

‖xk − x∗‖2 εk+1 +

m−1∑
k=0

‖hk‖2 αk εk+1

≤ D (ε0 + ε1) +

m−1∑
k=0

εkεk+1 +

m−1∑
k=1

‖xk − x∗‖2 εk+1 +H

m−1∑
k=0

αk εk+1. (4.13)

(Above, we employed (4.6) from Lemma 4.1 with respect to x∗ ∈ X∗ ⊆ X.) Re-
peating this procedure to eliminate all terms ‖xk − x∗‖2 for k > 0, we obtain

(4.13) ≤ . . . ≤ D

m∑
k=0

εk +

m∑
j=1

(m−j∑
k=0

εkεk+j +H

m−j∑
k=0

αkεk+j

)

4.2. ISA with Predetermined Step Sizes 141

= D

m∑
k=0

εk +

m∑
j=1

m−j∑
k=0

(εk +Hαk) εk+j .

Denote E :=
∑∞
k=0 εk. From the above chain of inequalities, (4.9) and (4.11), we

finally get:

‖xm+1 − x∗‖22 + 2

m∑
k=0

(fk − f∗)αk ≤ D2 +

m∑
k=0

βk

≤ D2 +AH2 +

m∑
k=0

ε2
k + 2H

m∑
k=0

αkεk + 2D

m∑
k=0

εk + 2

m∑
j=1

m−j∑
k=0

(εk +Hαk) εk+j

≤ D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

m−j∑
k=0

εkεk+j + 2H

m∑
j=0

m−j∑
k=0

αkεk+j

= D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

(
εj

m∑
k=j

εk

)
+ 2H

m∑
j=0

(
αj

m∑
k=j

εk

)
≤ D2 +AH2 + 2D

m∑
k=0

εk + 2

m∑
j=0

E εj + 2H

m∑
j=0

αj αj

≤ D2 +AH2 + 2 (D + E)

m∑
k=0

εk + 2H

m∑
k=0

α2
k

≤ (D + E)2 + E2 + (2 +H)AH =: R < ∞. (4.14)

Thus,
∑∞
k=0 βk <∞ holds indeed. Note, however, that since the iterates xk may be

infeasible, possibly fk < f∗, whence the second term on the left-most side of (4.14)
might be negative. Therefore, we next distinguish two cases:

(i) If fk ≥ f∗ for all but finitely many k, we can assume without loss of generality
that fk ≥ f∗ for all k (by considering only the “later” iterates). Now, because
fk ≥ f∗ for all k,

m∑
k=0

(fk − f∗)αk ≥
m∑
k=0

(
min

j=0,...,m
fj︸ ︷︷ ︸

=:f∗m

−f∗
)
αk = (f∗m − f∗)

m∑
k=0

αk.

Together with (4.14) this yields

0 ≤ 2 (f∗m − f∗)
m∑
k=0

αk ≤ R ⇔ 0 ≤ f∗m − f∗ ≤
R

2
∑m
k=0 αk

.

142 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Iteration k

f
(x

k
)

f∗

f∗ + 1
3η

f∗ + 2
3η

f∗ + η

m0 n0 m1 n1 m2 n2

Figure 4.2. The sequences (m`) and (n`).

Thus, because
∑m
k=0 αk diverges, we have f∗m → f∗ for m → ∞ (and, in

particular, lim infk→∞ fk = f∗).
To show that f∗ is in fact the only possible accumulation point (and hence
the limit) of (fk), assume that (fk) has another accumulation point strictly
larger than f∗, say f∗+ η for some η > 0. Then, both cases fk < f∗+ 1

3η and
fk > f∗ + 2

3η must occur infinitely often. We can therefore define two index
subsequences (m`) and (n`) by setting n(−1) := −1 and, for ` ≥ 0,

m` := min{ k : k > n`−1, fk > f∗ + 2
3η },

n` := min{ k : k > m`, fk < f∗ + 1
3η }.

Figure 4.2 illustrates this choice of indices. Now observe that for any `, writ-
ing ym` := PX(xm`−1−αm`−1h

m`−1) ∈ X and proceeding similarly to (4.13),
we have (using, in particular, the subgradient inequality (1.1), (4.4) and
Lemma 4.1):

1
3η < fm` − fn`
≤ (hm`)>(xn` − xm`) ≤ H · ‖xn` − xm`‖2
≤ H (‖xn` − ym`‖2 + εm`−1)

≤ H
(
‖xn`−1 − ym`‖2 +Hαn`−1 + εn`−1 + εm`−1

)

4.2. ISA with Predetermined Step Sizes 143

≤ . . . ≤ H ‖xm` − ym`‖2 +H2
n`−1∑
j=m`

αj +H

n`−1∑
j=m`

εj +H εm`−1

≤ H2
n`−1∑
j=m`

αj +H

n`−1∑
j=m`

εj + 2H εm`−1. (4.15)

For a given m, let `m := max{ ` : n` − 1 ≤ m } be the number of blocks of
indices between two consecutive indices m` and n` − 1 until m. We obtain:

1
3

`m∑
`=0

η ≤ H2
`m∑
`=0

n`−1∑
j=m`

αj +H

`m∑
`=0

n`−1∑
j=m`

εj + 2H

`m∑
`=0

εm`−1

≤ H2
`m∑
`=0

n`−1∑
j=m`

αj + 3HE. (4.16)

For m → ∞, the left hand side tends to infinity, and since HE < ∞, this
implies

`m∑
`=0

n`−1∑
j=m`

αj → ∞.

Then, since αk > 0 and fk ≥ f∗ for all k, (4.14) yields

∞ > R ≥ ‖xm+1 − x∗‖22 + 2

m∑
k=0

(fk − f∗)αk ≥ 2

m∑
k=0

(fk − f∗)αk

≥ 2

`m∑
`=0

n`−1∑
j=m`

(fj − f∗)︸ ︷︷ ︸
>

1
3η

αj > 2
3η

`m∑
`=0

n`−1∑
j=m`

αj .

But for m → ∞, this yields a contradiction since the sum on the right hand
side diverges. Hence, there does not exist an accumulation point strictly larger
than f∗, so we can conclude fk → f∗ as k →∞, i.e., the whole sequence (fk)

converges to f∗.
We now consider convergence of the sequence (xk). From (4.14) we conclude
that both terms on the left hand side are bounded independently of m. In
particular, this means (xk) is a bounded sequence. Hence, by the Bolzano-
Weierstraß Theorem, it has a convergent subsequence (xki) with xki → x

(as i → ∞) for some x. To show that the full sequence (xk) converges to x,

144 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

take any K and any ki < K and observe from (4.12) that

‖xK − x‖22 ≤ ‖xki − x‖22 +

K−1∑
j=ki

βj .

Since
∑∞
k=0 βk is a convergent series (see (4.14)), the right hand side becomes

arbitrarily small for ki and K large enough. This implies xk → x, and since
εk → 0, fk → f∗, and X∗ is closed, x ∈ X∗ must hold.

(ii) Now consider the case in which fk < f∗ occurs infinitely often. We write (f−k)

for the subsequence of (fk) with fk < f∗ and (f+
k) for the subsequence with

fk ≥ f∗. Clearly f−k → f∗. Indeed, the corresponding iterates are asymptoti-
cally feasible (since the projection accuracy εk tends to zero), and hence f∗ is
the only possible accumulation point of (f−k).
Denoting M−m = { k ≤ m : fk < f∗ } and M+

m = { k ≤ m : fk ≥ f∗ }, we
conclude from (4.14) that

‖xm+1 − x∗‖22 + 2
∑
k∈M+

m

(fk − f∗)αk ≤ R+ 2
∑
k∈M−m

(f∗ − fk)αk. (4.17)

Note that each summand is nonnegative. To see that the right hand side is
bounded independently of m, let yk−1 = xk−1 − αk−1 h

k−1, and observe that
here (i.e., with k ∈M−m), due to fk < f∗ ≤ f(PX(yk−1)), we have

f∗ − fk ≤ f
(
PX(yk−1)

)
− f

(
Pεk−1

X (yk−1)
)

≤ (hk−1)>
(
PX(yk−1)− Pεk−1

X (yk−1)
)

≤ ‖hk−1‖2
∥∥PX(yk−1)− Pεk−1

X (yk−1)
∥∥

2
≤ Hεk−1,

using the subgradient and Cauchy-Schwarz inequalities as well as pro-
perty (4.4) of PεX and the boundedness of the subgradient norms. From (4.17),
using (4.10) and (4.11), we thus obtain

‖xm+1 − x∗‖22 + 2
∑
k∈M+

m

(fk − f∗)αk

≤ R+ 2H
∑
k∈M−m

αk εk−1 ≤ R+ 2H
∑
k∈M−m

αk αk−1

≤ R+ 2H

∞∑
k=0

αk αk−1 ≤ R+ 4AH < ∞. (4.18)

Similarly to case (i), we conclude that both the sequence (xk) and the series

4.2. ISA with Predetermined Step Sizes 145

∑
k∈M+

m
(fk − f∗)αk are bounded.

It remains to show that f+
k → f∗. Assume to the contrary that (f+

k) has an
accumulation point f∗ + η for η > 0. Similarly to before, we construct index
subsequences (m`) and (p`) as follows: Set p(−1) := −1 and define, for ` ≥ 0,

m` := min{ k ∈M+
∞ : k > p`−1, fk > f∗ + 2

3η },
p` := min{ k ∈M−∞ : k > m` }.

Then m`, . . . , p` − 1 ∈M+
∞ for all `, and we have (cf. (4.15))

2
3η < fm` − fp` ≤ H2

p`−1∑
j=m`

αj +H

p`−1∑
j=m`

εj + 2H εm`−1.

Therefore (cf. (4.16)), with `m := max{ ` : p` − 1 ≤ m } for a given m,

2
3

`m∑
`=0

η ≤ H2
`m∑
`=0

p`−1∑
j=m`

αj + 3HE.

Now the left hand side becomes arbitrarily large as m → ∞, so that also∑`m
`=0

∑p`−1
j=m`

αj →∞, since HE <∞. Note that because αk > 0 and

`m∑
`=0

p`−1∑
j=m`

αj ≤
∑
k∈M+

m

αk,

this latter series must diverge as well. As a consequence, f∗ is itself an (other)
accumulation point of (f+

k): From (4.18) we have

∞ > R+ 4AH ≥ 2
∑
k∈M+

m

(fk − f∗)αk

≥
∑
k∈M+

m

(min{ fj : j ∈M+
m, j ≤ m }︸ ︷︷ ︸

=:f̂∗m

−f∗)αk = (f̂∗m − f∗)
∑
k∈M+

m

αk,

and thus

0 ≤ f̂∗m − f∗ ≤
R+ 4AH∑
k∈M+

m
αk
→ 0 as m→∞,

since
∑
k∈M+

m
αk diverges. But then, knowing (f̂∗k) converges to f∗, we can

146 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

use (m`) and another index subsequence (n`), given by

n` := min{ k ∈M+
∞ : k > m`, fk < f∗ + 1

3η },

to proceed analogously to case (i) to arrive at a contradiction. Thus, we
conclude that no η > 0 exists such that f∗ + η is an accumulation point
of (f+

k).
On the other hand, since (xk) is bounded and f is continuous on a neighbor-
hood of X (recall that for all k, xk is contained in an εk-neighborhood of X),
(f+
k) is bounded. Thus, it must have at least one accumulation point. Since

fk ≥ f∗ for all k ∈ M+
∞, the only possibility left is f∗ itself. Hence, f∗ is the

unique accumulation point (i.e., the limit) of the sequence (f+
k). As this is

also true for (f−k), the whole sequence (fk) converges to f∗.
Finally, convergence of the bounded sequence (xk) to some x ∈ X∗ can now
be obtained just like in case (i), completing the proof.

4.3 ISA with Dynamic Step Sizes

In order to apply the dynamic step size rule (4.3), i.e.,

αk = λk
f(xk)− ϕ
‖hk‖22

,

we need several modifications of the basic method, yielding Algorithm 4.2. This algo-
rithm works with a constant estimate ϕ of the optimal objective function value f∗

and essentially tries to reach a feasible point xk with f(xk) ≤ ϕ. (Note that if
ϕ = f∗, we would have obtained an optimal point in this case.) Throughout this
section, (xk), (fk), and (hk) denote the sequences of iterates, corresponding objec-
tive function values, and subgradients as generated by Algorithm 4.2, respectively.
An extension to variable estimates of f∗ is discussed in Section 4.4.3 below.

Remark 4.4. A few comments on Algorithm 4.2 are in order:
1. Since 0 < γ < 1, γ` → 0 (strictly monotonically) for `→∞. Thus, Steps 3–9

constitute a projection accuracy refinement phase, i.e., an inner loop in which
the current k is temporarily fixed, and xk is recomputed with a stricter accuracy
setting for the adaptive projection. This phase either leads to a point showing
ϕ ≥ f∗ (by termination or convergence in the inner loop over `) or eventually
resets xk to a point with fk > ϕ and hk 6= 0 so that the regular (outer)

4.3. ISA with Dynamic Step Sizes 147

Algorithm 4.2 Dynamic Step Size ISA
Input: estimate ϕ of f∗, starting point x0, sequences (λk) and (εk), refinement

parameter γ ∈ (0, 1)
Output: an (approximate) solution to (4.1)
1: initialize k := 0, ` = −1, x−1 := x0, h−1 := 0, α−1 := 0, ε−1 := ε0

2: repeat
3: choose a subgradient hk ∈ ∂f(xk)
4: if fk ≤ ϕ or hk = 0 then
5: if xk ∈ X then
6: stop (with xk feasible, showing ϕ ≥ f∗; optimal if hk = 0)
7: increment ` := `+ 1
8: reset xk := PεX(xk−1 − αk−1h

k−1) for ε = γ`εk−1

9: go to Step 3
10: compute step size αk := λk(fk − ϕ)/‖hk‖22
11: compute the next iterate xk+1 := PεkX (xk − αkhk)
12: reset ` := 0 and increment k := k + 1
13: until a stopping criterion is satisfied

iteration is resumed (with k no longer fixed).
2. Note that, if x0 is such that f0 ≤ ϕ or hk = 0, the algorithm begins with such

a refinement phase, projecting x0 more and more accurately until neither case
holds any longer (if possible); the initializations with counter −1 are needed
for this eventuality. (Clearly, ε−1 needs not be initialized to ε0, but any
nonnegative constant would suffice.) Moreover, we could of course postpone
the (repeated) determination of a subgradient (Step 3) in a refinement phase
until fk > ϕ is achieved, i.e., hk = 0 would necessarily be the only reason for
another accuracy refinement. This may be important in practice, where finding
a subgradient is sometimes expensive itself, and the case hk = 0 presumably
occurs very rarely anyway. For the sake of brevity we did not treat this
explicitly in Algorithm 4.2.

3. There are various ways in which the accuracy refinement phase could be re-
alized. Instead of (γ`) with constant γ ∈ (0, 1), any (strictly) monotonically
decreasing sequence (γ`) could be used. Since we will need εk → 0 to achieve
feasibility (in the limit) anyway, which implies that for all k there always ex-
ists some L > 0 such that εk+L < εk, we could also use min{εk−1, εk−1+`}
as the recalibrated accuracy. Moreover, we do not need to fix k, i.e., re-
peatedly replace xk by finer approximate projections, but could produce a
finite series of identical iterates (each reset to the last one before the inner
loop started) until the refinement phase is over. Similarly, we could use
αk = max{0, λk(fk − ϕ)/‖hk‖22} (and 0 if hk = 0); letting εk → 0 then

148 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

naturally implements the refinement, while in iterations with αk = 0, the pro-
duced point may move up to εk away from the optimal set. Assuming (εk) is
summable, this does not impede convergence. For all these variants, analogues
of the following convergence results hold true as well; however, the proofs re-
quire some extensions to account for the technical differences to the variant
we present, which admitted the overall shortest proofs. In practice, we would
generally expect these variants to behave similarly.
Moreover, if the adaptive approximate projections are realized using a conver-
gent algorithm, a natural way to refine the accuracy is to simply continue the
iterative process until the desired properties hold. Furthermore, note that in
principle, the “problematic” cases could also be treated by reverting to exact
projections (γ ≡ 0); however, in our present context this should be avoided
since computing the exact projection is considered too expensive.

We obtain the following convergence results, depending on whether ϕ over- or
underestimates f∗. The main proofs are deferred to the next subsection.

Theorem 4.5 (Convergence for dynamic step sizes with overestimation). Let the op-
timal point set X∗ be bounded, ϕ ≥ f∗, 0 < λk ≤ β < 2 for all k, and

∑∞
k=0 λk =∞.

Let (νk) be a nonnegative sequence with
∑∞
k=0 νk <∞, and let

εk :=−
(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)

+

√(
λk(fk − ϕ)

‖hk‖2
+ dX∗(xk)

)2

+
λk(2− λk)(fk − ϕ)2

‖hk‖22
. (4.19)

If the subgradients hk satisfy 0 < H ≤ ‖hk‖2 ≤ H <∞ and (εk) satisfies 0 ≤ εk ≤
min{εk, νk} for all k, then the following holds.
(i) For any given δ > 0 there exists some index K such that fK ≤ ϕ+ δ.
(ii) If additionally fk > ϕ for all k and if λk → 0 for k → ∞, then the sequence

of objective function values (fk) of the ISA iterates (xk) converges to ϕ.
(iii) If in addition to the prerequisites from (ii),

∑∞
k=0 λ

2
k <∞ and λk ≥

∑∞
j=k εk

holds for all k, then the sequence of ISA iterates (xk) converges to a point
x ∈ {x ∈ X : f(x) = ϕ }.

Remark 4.6.
1. The sequence (νk) is a technicality needed in the proof to ensure εk → 0.

Note from (4.19) that εk > 0 as long as ISA keeps iterating (in the main loop
over k), since fk > ϕ is then guaranteed by the adaptive accuracy refinements
and, by assumption, it holds that 0 < λk < 2.

4.3. ISA with Dynamic Step Sizes 149

2. More precisely, part (i) of Theorem 4.5 essentially means that after a finite
number of iterations, we reach a point xk with f∗ − c ≤ fk ≤ ϕ + δ, for any
c > 0. If ϕ < fk ≤ ϕ + δ, this point may still be infeasible, but the closer fk
gets to ϕ, the smaller εk becomes, i.e., the algorithm automatically increases
the projection accuracy. On the other hand, termination in Step 6 implies that
fk ≥ f∗ (since xk is then feasible), and if some inner loop is infinite, then the
refined projection points converge to a feasible point. Hence, for every c > 0,
there is some integer 0 ≤ L <∞ such that after the L-th accuracy refinement
and replacement of xk, fk ≥ f∗ − c holds.

3. Part (ii) shows what happens when all function values fk stay above the over-
estimate ϕ of f∗—which particularly holds true after possible refinements, if
all the accuracy refinement phases are finite (and no termination occurs)—and
we impose λk → 0 for k →∞: We eventually obtain fk arbitrarily close to ϕ,
with vanishing feasibility violation as k →∞. (Indeed, as part (iii) shows, we
can also obtain convergence of the iterate sequence with some more technical
effort.) Then, as well as in case of termination in Step 6 or convergence in a
refinement phase (`→∞), it may be desirable to restart the algorithm using
a smaller ϕ; see Section 4.4.3.

4. The conditions ‖hk‖2 ≥ H > 0, for all k, in Theorem 4.5 imply that all
subgradients used by the algorithm are nonzero. These conditions are often
automatically guaranteed, for example, if X is compact and no unconstrained
optimum of f lies in X. In this case, ‖h‖2 ≥ H > 0 for all h ∈ ∂f(x) and
x ∈ X; moreover, the same holds for a small enough open neighborhood of X.
Also, the norms of the subgradients are bounded from above. Thus, if we
start close enough to X and restrict εk to be small enough, the conditions
of Theorem 4.5 are fulfilled. Another example in which the conditions are
naturally satisfied is discussed in Section 4.6.

Theorem 4.7 (Convergence for dynamic step sizes with underestimation). Let the
set of optimal points X∗ be bounded, ϕ < f∗, 0 < λk ≤ β < 2 for all k, and∑∞
k=0 λk =∞. Let (νk) be a nonnegative sequence with

∑∞
k=0 νk <∞, let

Lk :=
λk(2− β)(fk − ϕ)

‖hk‖22

(
f∗ − fk +

β

2− β
(f∗ − ϕ)

)
, (4.20)

and let

ε̃k := −
(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
+

√(
λk(fk − ϕ)

‖hk‖2
+ dX∗(xk)

)2

− Lk. (4.21)

150 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

If the subgradients hk satisfy 0 < H ≤ ‖hk‖2 ≤ H <∞ and (εk) satisfies 0 ≤ εk ≤
min{|ε̃k|, νk} for all k, then the following holds.
(i) For any given δ > 0, there exists some K such that

fK ≤ f∗ +
β

2− β
(f∗ − ϕ) + δ.

(ii) If additionally λk → 0, then the sequence of objective function values (fk) of
the ISA iterates (xk) converges to the optimal value f∗.

(iii) If it additionally holds that
∑∞
k=0 λ

2
k < ∞ and λk ≥

∑∞
j=k εk for all k, then

the sequence of ISA iterates (xk) converges to a point x∗ ∈ X∗.

Remark 4.8.
1. If fk ≤ ϕ < f∗, Steps 3–8 ensure that after a finite number of projection

refinements xk satisfies ϕ < fk. Thus, the algorithm will never terminate in
Step 6 and every refinement phase is finite.

2. Moreover, infeasible points xk with ϕ < fk < f∗ are possible. Hence, the
inequality in Theorem 4.7 (i) may be satisfied too soon to provide conclusive
information regarding solution quality. Interestingly, part (ii) shows that by
letting the parameters (λk) tend to zero, one can nevertheless establish con-
vergence to the optimal value f∗ (and dX(xk) ≤ dX∗(xk)→ 0, i.e., asymptotic
feasibility).

3. Theoretically, small values of β yield smaller errors, while in practice this
restricts the method to very small steps (since λk ≤ β), resulting in slow con-
vergence. This illustrates a typical kind of trade-off between solution accuracy
and speed.

4. The use of |ε̃k| in Theorem 4.7 avoids conflicting bounds on εk in case Lk > 0.
Because 0 ≤ εk ≤ νk holds notwithstanding, 0 ≤ εk → 0 is maintained.

5. The same statements on lower and upper bounds on ‖hk‖2 as in Remark 4.6
apply in the context of Theorem 4.7.

Finally, we illustrate that with exact Polyak step sizes and additional assump-
tions on the adaptive approximate projections one can also get convergence from
previously known results:

Theorem 4.9 (Convergence for exact Polyak step sizes with firmly nonexpansive
approximate projections). Let the set of optimal points X∗ be bounded. Furthermore,
assume that εk → 0 and that the adaptive approximate projections P εkX are also firmly
nonexpansive (i.e., the mappings 2P εkX − Id are nonexpansive, cf. [16, Fact 1.3]). If
the subgradients hk satisfy 0 < H ≤ ‖hk‖ ≤ H <∞, and the relaxation parameters

4.3. ISA with Dynamic Step Sizes 151

obey ξ ≤ λk ≤ 2− ξ for some ξ > 0, then the sequence of ISA iterates

xk+1 := P εkX

(
xk − λk

fk − f∗

‖hk‖2
hk
)
,

converges to a solution of (4.1).

Proof. Since we assume that the P εkX are firmly nonexpansive, the algorithm now
fits into the framework of subgradient algorithms in [16, Section 7]. Since εk → 0, it
follows that the P εkX converge actively pointwise ([16, Definition 3.15]). Then, [16,
Theorem 7.7] implies that the algorithm is focusing [16, Definition 3.7] and general
results from [16] (e.g., Corollary 3.12 or 3.22) prove the claim.

It should be noted that the additional assumption of firmly nonexpansiveness
may be easy to fulfill in special cases, but this is not always the case. For instance,
Section 4.5.4 below contains an example in which firmly nonexpansive projections
are not readily available, while the one in Section 4.5.1 admits such projections.

4.3.1 Convergence Proofs

Let us start with a brief discussion of our approach to prove Theorems 4.5 and 4.7,
in particular also with respect to typical procedures for feasible methods. In the
rest of this section, αk will always denote step sizes of the form (4.3).
Recall that in subgradient methods, the objective function values need not de-

crease monotonically. Hence, the key quantity in convergence proofs usually is the
distance to the optimal set X∗. For ISA with dynamic step sizes (Algorithm 4.2),
we have the following result concerning these distances.

Lemma 4.10. Let x∗ ∈ X∗. For the sequence of ISA iterates (xk), computed with
step sizes αk = λk(fk − ϕ)/‖hk‖22, it holds that

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 + ε2
k + 2

(
λk(fk − ϕ)

‖hk‖2
+ ‖xk − x∗‖2

)
εk

+
λk(fk − ϕ)

‖hk‖22

(
λk(fk − ϕ)− 2(fk − f∗)

)
. (4.22)

In particular, also

dX∗(x
k+1)2 ≤ dX∗(xk)2 − 2αk(fk − f∗) + (αk‖hk‖2 + εk)2 + 2 dX∗(x

k) εk. (4.23)

152 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Proof. Plug (4.3) into (4.7) for x = x∗ and rearrange terms to obtain (4.22). If the
optimization problem (4.1) has a unique optimum x∗, then obviously ‖xk − x∗‖2 =

dX∗(x
k) for all k, so (4.23) is identical to (4.22). Otherwise, note that since X∗ is

the intersection of the closed set X with the (sub-)level set {x : f(x) ≤ f∗ } of the
convex function f , X∗ is closed (cf., for example, [135, Prop. 1.2.2, 1.2.6]) and the
projection onto X∗ is well-defined. Then, considering x∗ = PX∗(xk), (4.7) becomes∥∥xk+1 − PX∗(xk)

∥∥2

2
≤ dX∗(xk)2 − 2αk(fk − f∗) + (αk‖hk‖2 + εk)2 + 2 dX∗(x

k) εk.

Furthermore, because clearly f(PX∗(x)) = f(PX∗(y)) = f∗ for all x, y ∈ Rn, and
by definition of the Euclidean projection,

dX∗(x
k+1)2 =

∥∥xk+1 − PX∗(xk+1)
∥∥2

2
≤
∥∥xk+1 − PX∗(xk)

∥∥2

2
.

Combining the last two inequalities yields (4.23).
Moreover, note that these results continue to hold true if xk+1 is replaced in a

projection refinement phase (starting in the next iteration k + 1), since then only
accuracy parameters smaller than εk are used.

Typical convergence results are often derived by showing that the sequence
(‖xk − x∗‖2) is monotonically decreasing (for arbitrary x∗ ∈ X∗) under certain
assumptions on the step sizes, subgradients, etc. For instance, this is done in [4],
where (4.22) with εk = 0 for all k is the central inequality, cf. [4, Prop. 2]. In
our case, i.e., working with adaptive approximate projections as specified by (4.4),
we can follow this principle to derive conditions on the projection accuracies (εk)

which still allow for a (monotonic) decrease of the distances from the optimal set:
If the last summand in (4.22) is negative, the resulting gap between the distances
from X∗ of subsequent iterates can be exploited to relax the projection accuracy,
i.e., to choose εk > 0 without destroying monotonicity.
Naturally, to achieve feasibility (at least in the limit), we will need to have (εk)

diminishing (εk → 0 as k → ∞). It will become clear that this, combined with
summability (

∑∞
k=0 εk <∞) and with monotonicity conditions as described above,

is already enough to extend the analysis to cover iterations with fk < f∗, which
may occur since we project inaccurately.
For different choices of the estimate ϕ of f∗, we will now derive the proofs of

Theorems 4.5 and 4.7 via a series of intermediate results. Corresponding results
for exact projections (εk = 0) can be found in [4]. In fact, on Rn, our analy-
sis for adaptive approximate projections improves on some of these earlier results
(e.g., [4, Prop. 10] states convergence of some subsequence of the function values to
the optimum for the case ϕ < f∗, whereas our Theorem 4.7 gives convergence of the

4.3. ISA with Dynamic Step Sizes 153

whole sequence (fk), for approximate and also for exact projections).
For the remainder of this section we can assume that ISA (Algorithm 4.2) does

not terminate in Step 6 and that all inner projection accuracy refinement loops are
finite. Otherwise, there is a refinement phase starting at some iteration k such that,
as `→∞, xk is repeatedly reset to

y`k := Pγ
`εk−1

X (xk−1 − αk−1h
k−1) → P0

X(xk−1 − αk−1h
k−1) ∈ X,

with f(y`k)→ ϕ ≤ ϕ; cf. Remarks 4.6 and 4.8.

4.3.1.1 Using Overestimates of the Optimal Value

In this part we will focus on the case ϕ ≥ f∗. As might be expected, this relation
allows for eliminating the unknown f∗ from (4.23).

Lemma 4.11. Let ϕ ≥ f∗ and λk ≥ 0. If fk ≥ ϕ for some k ∈ N, then

dX∗(x
k+1)2 ≤ dX∗(x

k)2 + ε2
k + 2

(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk

+
λk(λk − 2)(fk − ϕ)2

‖hk‖22
. (4.24)

Proof. This is obtained immediately from Lemma 4.10, using fk ≥ ϕ ≥ f∗ and
λk ≥ 0.

Note that ISA guarantees fk > ϕ by sufficiently accurate projection (otherwise the
method stops or the inner refinement loop over `, with fixed k, is infinite, indicating ϕ
was too large, see Steps 3–9 of Algorithm 4.2), and that the last summand in (4.24)
is always negative for 0 < λk < 2. Hence, adaptive approximate projections (εk > 0)
can always be employed without destroying the monotonic decrease of (dX∗(x

k)),
as long as the εk are chosen small enough.
The following result provides a theoretical bound on how large the projection

accuracies εk may become.

Lemma 4.12. Let 0 < λk < 2 for all k. For ϕ ≥ f∗, the sequence (dX∗(x
k)) is

monotonically decreasing and converges to some ζ ≥ 0, if 0 ≤ εk ≤ εk for all k,
where εk is defined in (4.19) of Theorem 4.5.

Proof. Considering (4.24), it suffices to show that for εk ≤ εk, we have

ε2
k + 2

(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk +

λk(λk − 2)(fk − ϕ)2

‖hk‖22
≤ 0. (4.25)

154 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

The bound εk from (4.19) is precisely the (unique) positive root of the quadratic
function in εk given by the left hand side of (4.25). Thus, we have a monotoni-
cally decreasing (i.e., nonincreasing) sequence (dX∗(x

k)), and since its members are
bounded below by zero, it converges to some nonnegative value, say ζ.

Consequently, if X∗ is bounded, we obtain boundedness of the iterate se-
quence (xk).

Corollary 4.13. Let X∗ be bounded. If the sequence (dX∗(x
k)) is monotonically

decreasing, then the sequence (xk) is bounded.

Proof. By monotonicity of (dX∗(x
k)), making use of the triangle inequality,

‖xk‖2 =
∥∥xk − PX∗(xk) + PX∗(xk)

∥∥
2

≤ dX∗(x
k) +

∥∥PX∗(xk)
∥∥

2
≤ dX∗(x

0) + sup
x∈X∗

‖x‖2 < ∞,

since X∗ is bounded by assumption.

We now have all the tools at hand for proving Theorem 4.5.

Proof of Theorem 4.5. First, we show part (i). Let the main assumptions of
Theorem 4.5 hold and suppose—contrary to the desired result (i)—that fk > ϕ+ δ

for all k (possibly after finitely many refinements of the projection accuracy used to
compute xk). By Lemma 4.11,

λk(2− λk)(fk − ϕ)2

‖hk‖22
≤ dX∗(x

k)2−dX∗(xk+1)2+ε2
k+2

(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk.

Since 0 < H ≤ ‖hk‖2 ≤ H < ∞, 0 < λk ≤ β < 2, and fk − ϕ > δ for all k by
assumption, we have

λk(2− λk)(fk − ϕ)2

‖hk‖22
≥ λk(2− β)δ2

H
2 .

By Lemma 4.12, dX∗(xk) ≤ dX∗(x
0). Also, by Corollary 4.13 there exists F < ∞

such that fk ≤ F for all k. Hence, λk(fk−ϕ) ≤ β(F−ϕ), and since 1/‖hk‖2 ≤ 1/H,
we obtain

(2− β)δ2

H
2 λk ≤ dX∗(x

k)2−dX∗(xk+1)2 +ε2
k+2

(
β(F − ϕ)

H
+ dX∗(x

0)

)
εk. (4.26)

4.3. ISA with Dynamic Step Sizes 155

Summation of the inequalities (4.26) for k = 0, 1, . . . ,m yields

(2− β)δ2

H
2

m∑
k=0

λk ≤ dX∗(x
0)2 − dX∗(xm+1)2

+

m∑
k=0

ε2
k + 2

(
β(F − ϕ)

H
+ dX∗(x

0)

) m∑
k=0

εk.

Now, by assumption, the left hand side tends to infinity as m→∞, while the right
hand side remains finite (note that nonnegativity and summability of (νk) imply the
summability of (ν2

k), properties that carry over to (εk)). Thus, we have reached a
contradiction, which proves part (i) of Theorem 4.5, i.e., that fK ≤ ϕ + δ holds in
some iteration K.
We now turn to part (ii): Besides the main assumptions of Theorem 4.5, let

λk → 0 and suppose fk > ϕ for all k (again, possibly after refinements). Then,
since we know from part (i) that the function values fall below every ϕ+ δ, we can
construct a monotonically decreasing subsequence (fKj) such that fKj → ϕ. (To
see this, note that if fk < ϕ+δ is reached with fk < ϕ, the ensuing refinement phase
not necessarily ends with xk replaced by a point with ϕ < fk < ϕ + δ. However,
then there always exists a K > k such that ϕ < fK < ϕ+ δ, since λk → 0, εk → 0,
and by continuity of f .)
To show that ϕ is the unique accumulation point of (fk), assume to the contrary

that there is another subsequence of (fk) which converges to ϕ+η, with some η > 0.
We can now employ the same technique as in the proof of Theorem 4.2 to reach a
contradiction:
The two cases fk < ϕ + 1

3η and fk > ϕ + 2
3η must both occur infinitely often,

since ϕ and ϕ+ η are accumulation points. Set n(−1) := −1 and define, for ` ≥ 0,

m` := min{ k : k > n`−1, fk > ϕ+ 2
3η },

n` := min{ k : k > m`, fk < ϕ+ 1
3η }.

Then, with ∞ > F ≥ fk for all k (such an F exists since (xk) is bounded and,
therefore, so is (fk)) and the subgradient norm bounds, we obtain

1
3η < fm` − fn` ≤ H‖xm` − xn`‖2 ≤

H(F − ϕ)

H

n`−1∑
j=m`

λj +H

n`−1∑
j=m`

εj

156 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

and from this, denoting `m := max{ ` : n` − 1 ≤ m } for a given m,

1
3

`m∑
`=0

η ≤ H(F − ϕ)

H

`m∑
`=0

n`−1∑
j=m`

λj +H

`m∑
`=0

n`−1∑
j=m`

εj .

Since for m → ∞, the left hand side tends to infinity, the same must hold for the
right hand side. But since

∑`m
`=0

∑n`−1
j=m`

εj ≤
∑m
k=0 εk ≤

∑m
k=0 νk <∞, this implies

`m∑
`=0

n`−1∑
j=m`

λj → ∞ for m→∞. (4.27)

Moreover, using the same estimates as in part (i) above, (4.24) yields

2−β
H︸︷︷︸

=:C1<∞

(fk − ϕ)2λk ≤ dX∗(x
k)2 − dX∗(xk+1)2 + ε2

k + 2
(
β(F−ϕ)

H + dX∗(x
0)
)

︸ ︷︷ ︸
=:C2<∞

εk

and hence, by summation for k = 0, . . . ,m for a given m, it holds that

C1

m∑
k=0

(fk − ϕ)2λk ≤ dX∗(x
0)2 − dX∗(xm+1)2 +

m∑
k=0

ε2
k + C2

m∑
k=0

εk. (4.28)

Observe that all summands of the left hand side term are positive, and thus

C1

m∑
k=0

(fk − ϕ)2λk ≥ C1

`m∑
`=0

n`−1∑
j=m`

(fj − ϕ︸ ︷︷ ︸
>

1
3η

)2λj >
C1η

2

9

`m∑
`=0

n`−1∑
j=m`

λj .

Therefore, as m → ∞, the left hand side of (4.28) tends to infinity (by (4.27) and
the above inequality) while the right hand side expression remains finite (recall
0 ≤ εk ≤ νk with (νk) summable and hence also square-summable). Thus, we have
reached a contradiction, and it follows that ϕ is the only accumulation point (i.e.,
the limit) of the whole sequence (fk), which proves part (ii).
Regarding part (iii) of the theorem, assume additionally that

∑∞
k=0 λ

2
k <∞ and

that λk ≥
∑∞
j=k εk for all k. We already saw that (xk) is bounded (whence also,

with some F < ∞, fk ≤ F for all k), and since moreover, εk → 0 (and therefore
dX(xk)→ 0), there exists a subsequence (xki) of (xk) that converges to some x ∈ X.
In fact, since fk → ϕ, it must hold that f(x) = ϕ. By (4.7) from Lemma 4.1, and due
to the various properties of (λk), (fk), (xk), (εk) and the subgradient norms (‖hk‖2),

4.3. ISA with Dynamic Step Sizes 157

it holds that, for any k,

‖xk+1 − x‖22 ≤ ‖xk − x‖22 − 2αk(fk − ϕ) + (αk‖hk‖2 + εk)2 + 2 ‖xk − x‖2 εk

= ‖xk − x‖22 + 2
(fk − ϕ)

‖hk‖2
λkεk + ε2

k + 2‖xk − x‖2 εk

+
(fk − ϕ)2

‖hk‖22
λk(λk − 2)

≤ ‖xk − x‖22 + 2
(F − ϕ)

H
λkεk + ε2

k + 2‖xk − x‖2 εk︸ ︷︷ ︸
=:βk

Summation of these inequalities for k = 0, . . . ,m, for some m ∈ N, yields

‖xm+1 − x‖22 ≤ ‖x0 − x‖22 +

m∑
k=0

βk.

Completely analogous to the derivation of (4.13) and (4.14) in the proof of Theo-
rem 4.2, letting D := ‖x0 − x‖2, we get

m∑
k=0

‖xk − x‖2εk

= Dε0 +

m∑
k=1

∥∥∥∥Pεk−1

X

(
xk−1 − λk−1

(fk−1 − ϕ)

‖hk−1‖22
hk−1

)
− x
∥∥∥∥

2

εk

≤ D(ε0 + ε1) +

m−1∑
k=0

εkεk+1 +

m−1∑
k=1

‖xk − x‖2 εk+1 +
H(F − ϕ)

H2

m−1∑
k=0

λkεk+1

≤ . . . ≤ D

m∑
k=0

εk +

m∑
j=1

(
m−j∑
k=0

εkεk+j +
H(F − ϕ)

H2

m−j∑
k=0

λkεk+j

)

= D

m∑
k=0

εk +

m∑
j=1

m−j∑
k=0

(
εk +

H(F − ϕ)

H2 λk

)
εk+j ,

and therefore, writing E :=
∑∞
k=0 εk,

m∑
k=0

βk ≤ 2
(F − ϕ)

H

m∑
k=0

λkεk +

m∑
k=0

ε2
k + 2D

m∑
k=0

εk

+ 2

m∑
j=1

m−j∑
k=0

(
εk +

H(F − ϕ)

H2 λk

)
εk+j

158 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

≤ 2D

m∑
k=0

εk + 2

m∑
j=0

εj m∑
k=j

εk

+ 2
H(F − ϕ)

H2

m∑
j=0

λk m∑
k=j

εk

≤ 2(D + E)

m∑
k=0

εk + 2
H(F − ϕ)

H2

m∑
k=0

λ2
k.

Thus,
∑∞
k=0 βk < ∞. From this, and since xki → x, we see—just like in the proof

of Theorem 4.2—that for any sufficiently large ki and K > ki, the right hand side of
‖xK − x‖22 ≤ ‖xki − x‖22 +

∑K−1
j=ki

βj becomes arbitrarily small, which implies that
xk → x.
This shows part (iii) and thus completes the proof of Theorem 4.5.

Note also that for x from Theorem 4.5, it holds that dX∗(x) = ζ ≥ 0, where ζ is
the same as in Lemma 4.12.

4.3.1.2 Using Lower Bounds on the Optimal Value

In the following, we focus on the case ϕ < f∗, i.e., using a constant lower bound
in the step size definition (4.3). Such a lower bound is often more readily available
than (useful) upper bounds; for instance, it can be computed via the dual problem,
or sometimes derived directly from properties of the objective function such as, e.g.,
nonnegativity of the function values.
Following arguments similar to those in the previous part, we can prove con-

vergence of ISA (under certain assumptions), provided that the projection accura-
cies (εk) obey conditions analogous to those for the case ϕ ≥ f∗. Moreover, recall
that for ϕ < f∗, every refinement phase is finite (cf. Remark 4.8), so that fk > ϕ is
guaranteed for all k; in particular, Step 6 of Algorithm 4.2 is never executed, since
X ∩ {x : f(x) < ϕ} = ∅.
Let us start with analogues of Lemmas 4.11 and 4.12.

Lemma 4.14. Let ϕ < f∗ and 0 < λk ≤ β < 2. If fk ≥ ϕ for some k ∈ N, then

dX∗(x
k+1)2 ≤ dX∗(x

k)2 + ε2
k + 2

(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk + Lk, (4.29)

where Lk = λk(2−β)(fk−ϕ)
‖hk‖22

(f∗ − fk + β
2−β (f∗ − ϕ)) as in (4.20) of Theorem 4.7.

Proof. For ϕ < f∗, 0 < λk ≤ β < 2, and fk ≥ ϕ, it holds that

λk(fk − ϕ)− 2(fk − f∗) ≤ β(fk − ϕ)− 2(fk − f∗) = β(f∗ − ϕ) + (2− β)(f∗ − fk).

4.3. ISA with Dynamic Step Sizes 159

The claim now follows immediately from Lemma 4.10 and (4.20).

Lemma 4.15. Let ϕ < f∗, let 0 < λk ≤ β < 2 and fk ≥ f∗ + β
2−β (f∗ − ϕ) for

all k, and let Lk be given by (4.20). Then (dX∗(x
k)) is monotonically decreasing

and converges to some ξ ≥ 0, if 0 ≤ εk ≤ ε̃k for all k, where ε̃k is defined in (4.21).

Proof. The condition fk ≥ f∗+ β
2−β (f∗−ϕ) implies Lk ≤ 0 and hence ensures that

adaptive approximate projection can be used while still allowing for a decrease in
the distances of the subsequent iterates from X∗. The rest of the proof is completely
analogous to that of Lemma 4.12, considering (4.29) and (4.20) to derive the upper
bound ε̃k given by (4.21) on the projection accuracy.

We can now state the proof of our convergence results for the case ϕ < f∗.

Proof of Theorem 4.7. Let the main assumptions of Theorem 4.7 hold. We start
with proving part (i): Let some δ > 0 be given and suppose—contrary to the desired
result (i)—that fk > f∗+ β

2−β (f∗−ϕ) + δ for all k (possibly after refinements). By
Lemma 4.14,

dX∗(x
k+1)2 ≤ dX∗(x

k)2 + ε2
k + 2

(
λk(fk − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk + Lk.

Since 0 < H ≤ ‖hk‖2 ≤ H, 0 < λk ≤ β < 2, and ϕ < fk, and due to our assumption

f∗ − fk +
β

2− β
(f∗ − ϕ) < −δ for all k,

it follows that
Lk < − λk(2− β)(fk − ϕ)δ

H
2 < 0.

By Lemma 4.15, dX∗(xk) ≤ dX∗(x
0), and Corollary 4.13 again ensures existence of

some F < ∞ such that fk ≤ F for all k. Because also λk(fk − ϕ) ≤ β(F − ϕ) and
1/‖hk‖2 ≤ 1/H, we hence obtain

λk(2− β)(fk − ϕ)δ

H
2 < −Lk ≤ dX∗(x

k)2 − dX∗(xk+1)2

+ ε2
k + 2

(
β(F − ϕ)

H
+ dX∗(x

0)

)
εk. (4.30)

160 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Summation of these inequalities for k = 0, 1, . . . ,m shows that

(2− β)δ

H
2

m∑
k=0

(fk − ϕ)λk < dX∗(x
0)2 − dX∗(xm+1)2

+

m∑
k=0

ε2
k + 2

(
β(F − ϕ)

H
+ dX∗(x

0)

) m∑
k=0

εk. (4.31)

Moreover, our assumption on fk yields

fk − ϕ > f∗ +
β

2− β
f∗ − β

2− β
ϕ+ δ − ϕ =

2

2− β
(f∗ − ϕ) + δ.

It follows from (4.31) that(
2(f∗ − ϕ) + (2− β)δ

)
δ

H
2

m∑
k=0

λk

< dX∗(x
0)2 − dX∗(xm+1)2 +

m∑
k=0

ε2
k + 2

(
β(F − ϕ)

H
+ dX∗(x

0)

) m∑
k=0

εk.

Now, by assumption, the left hand side tends to infinity as m → ∞, whereas by
Lemma 4.15 and the choice of 0 ≤ εk ≤ min{|ε̃k|, νk} with a nonnegative summable
(and hence also square-summable) sequence (νk), the right hand side remains finite.
Thus, we have reached a contradiction, and part (i) is proven, i.e., there does exist
some K such that fK ≤ f∗ + β

2−β (f∗ − ϕ) + δ (possibly after refinements of the
projection accuracy and recomputation of xK).
Let us now turn to part (ii): Again, let the main assumptions of Theorem 4.7 hold

and let λk → 0. Recall that for ϕ < f∗, we have fk > ϕ for all k by construction of
ISA (refinement loops). We distinguish three cases:
If fk < f∗ holds for all k ≥ k0 for some k0, then fk → f∗ is obtained immediately,

just like in the proof of Theorem 4.2, by asymptotic feasibility.
On the other hand, if fk ≥ f∗ for all k larger than some k0, then repeated

application of part (i) yields a subsequence of (fk) which converges to f∗: For
any δ > 0 we can find an index K such that f∗ ≤ fK ≤ f∗ + β

2−β (f∗ − ϕ) + δ;
thus, obviously, we get arbitrarily close to f∗ if we choose β and δ small enough.
However, we have the restriction λk ≤ β. But since λk → 0, we may “restart”
our argumentation if λk is small enough and replace β (and δ) with a smaller one.
With the convergent subsequence constructed along these lines, we can then use the
same technique as in the proof of Theorem 4.5 (ii) to show that (fk) has no other
accumulation point but f∗, whence fk → f∗ follows.

4.4. Discussion: Extensions of the ISA Framework 161

Finally, when both cases fk < f∗ and fk ≥ f∗ occur infinitely often, we can
proceed similarly to the proof of Theorem 4.2: The subsequence of function values
below f∗ converges to f∗, since εk → 0. For the function values greater or equal
to f∗, we assume that there is an accumulation point f∗+ η larger than f∗, deduce
that an appropriate sub-sum of the λk’s diverges and then sum up equation (4.30)
for the respective indices (belonging to { k : fk ≥ f∗ }) to arrive at a contradiction.
Note that the iterate sequence (xk) is bounded, due to Corollary 4.13 (for iterations k
with fk ≥ f∗) and because the iterates with ϕ < fk < f∗ stay within a bounded
neighborhood of the bounded set X∗, since (εk) tends to zero and is summable.
Hence, as f is continuous on a neighborhood ofX (which contains all xk from some k
on), (fk) is bounded as well and therefore must have at least one accumulation point.
The only possibility left now is f∗, so we conclude fk → f∗.
Now consider part (iii): With fk → f∗ and εk → 0, we obviously have that

dX∗(x
k) → 0. Thus, the bounded sequence (xk) has a subsequence (xki) that

converges to some x∗ ∈ X∗. From (4.7) in Lemma 4.1 and the various properties of
the parameter, point, or objective function value sequences involved, we obtain

‖xk+1 − x∗‖22 ≤ ‖xk − x∗‖22 − 2
(fk − ϕ)(fk − f∗)

‖hk‖22
λk + ε2

k

+ 2
(fk − ϕ)

‖hk‖2
λkεk +

(fk − ϕ)2

‖hk‖22
λ2
k + 2‖xk − x∗‖2 εk

≤ ‖xk − x∗‖22 + ε2
k + 2‖xk − x∗‖2 εk

+ 2
(F − ϕ)

H
λkεk +

(F − ϕ)2

H2 λ2
k + 2

(f∗ − ϕ)2

H2 λk,

since −(fk − ϕ)(fk − f∗) < 0 if and only if fk > f∗, and −(fk − ϕ)(fk − f∗) ≤
(f∗ − ϕ)2 otherwise. Now we can proceed completely analogously to the proof of
Theorem 4.5(iii) to obtain convergence of the whole sequence (xk) to x∗; for brevity,
we omit the details.
This completes the proof of Theorem 4.7.

4.4 Discussion: Extensions of the ISA Framework

In this section, we will discuss some extensions that are perhaps particularly rel-
evant from a practical point of view. We start by considering approximate sub-
gradients, which can be incorporated into both ISA variants with predetermined
(Algorithm 4.1) or dynamic Polyak-type step sizes (Algorithm 4.2), respectively.

162 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

For the latter variant, we then illustrate how to obtain bounds on the projection
accuracies that are independent of the (generally unknown) distance from the op-
timal set, and thus computable. We also sketch how to extend the method from
using a constant estimate ϕ of the optimal objective function value f∗ to employing
variable target values, thus overcoming the need to know a priori whether ϕ ≥ f∗

or ϕ < f∗.

4.4.1 Integration of ε-Subgradients

Sometimes, finding a subgradient can itself be nontrivial and thus require some
computational effort. Moreover, numerical issues may lead to acquiring erroneous
subgradients instead of exact ones. Thus, relaxing the subdifferential may simplify
acquiring suitable subgradient directions.
In view of such possible difficulties arising in applications of subgradient methods,

it is noteworthy that the ISA convergence analyses (Theorems 4.2, 4.5 and 4.7) can
be extended to work with (so-called) ε-subgradients [25], i.e., when replacing ∂f(x)

by
∂ρf(x) := {h ∈ Rn : f(y)− f(x) ≥ h>(y − x)− ρ ∀ y ∈ Rn }.

(To avoid confusion with the projection accuracy parameter ε, we use ρ instead of ε
in spite of the moniker “ε-subgradients”.) For instance, we immediately obtain the
following result.

Corollary 4.16. Let ISA with predetermined step sizes (Algorithm 4.1) choose hk ∈
∂ρkf(xk) with ρk ≥ 0 for all k. Under the assumptions of Theorem 4.2, if (ρk) is
chosen summable (

∑∞
k=0 ρk <∞) and such that

(i) ρk ≤ µαk for some µ > 0, or
(ii) ρk ≤ µ εk for some µ > 0,

then the sequence of ISA iterates (xk) converges to an optimal point.

Proof. The proof is analogous to that of Theorem 4.2; we will therefore only sketch
the necessary modifications: Choosing hk ∈ ∂ρkf(xk) (instead of hk ∈ ∂f(xk)) adds
the term +2αkρk to the right hand side of (4.7). If ρk ≤ µαk for some constant
µ > 0, the square-summability of (αk) suffices: By upper bounding 2αkρk, the
constant term +2µA is added to the definition of R in (4.14). Similarly, ρk ≤ µ εk
does not impair convergence under the assumptions of Theorem 4.2, because then

4.4. Discussion: Extensions of the ISA Framework 163

the additional summand in (4.14) is

2

m∑
k=0

αkρk ≤ 2µ

m∑
k=0

αkεk ≤ 2µ

m∑
k=0

(
αk

∞∑
`=k

εk

)
≤ 2µ

m∑
k=0

α2
k ≤ 2µA.

The rest of the proof is almost identical, using R modified as explained above,
and with some other minor changes where ρk-terms need to be considered (e.g.,
the term +ρm` is introduced in (4.15), yielding an additional sum in (4.16), which
remains finite when passing to the limit because (ρk) is summable).

Similar extensions are possible when using dynamic step sizes of the form (4.3).
The upper bounds (4.19) and (4.21) for the projection accuracies (εk) will depend
on (ρk) as well, which of course must be taken into account when extending the
proofs of Theorems 4.5 and 4.7 accordingly. Then, summability of (ρk) (implying
ρk → 0) is enough to maintain convergence. In particular, one could again require
ρk ≤ µ εk for some µ > 0. We will not go into further detail here, since the extensions
are straightforward.

4.4.2 Computable Bounds for the Distance to the Optimal
Point Set

The results in Theorems 4.5 and 4.7 hinge on bounds εk and ε̃k on the projection
accuracy parameters εk, respectively. These bounds depend on unknown informa-
tion and therefore seem of little practical use such as, for instance, an automated
accuracy control in an implementation of the dynamic step size ISA. While the
quantity f∗ can sometimes be replaced by estimates directly, it may generally be
hard to obtain useful estimates for the distance of the current iterate to the optimal
set. However, such estimates are available for certain classes of objective functions.
We will sketch several examples in the following.
For instance, when f is a strongly convex function, i.e., there exists some constant

C > 0 such that for all x, y and µ ∈ [0, 1]

f(µx+ (1− µ)y) ≤ µf(x) + (1− µ)f(y)− C µ(1− µ)‖x− y‖22,

one can use the following upper bound on the distance to the optimal set [150]:

dX∗(x) ≤ min
{√

f(x)−f∗
C , 1

2C min
h∈∂f(x)

‖h‖2
}
.

For functions f such that f(x) ≥ C ‖x‖2 − D, with constants C,D > 0, one

164 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

can make use of dX∗(x) ≤ ‖x‖2 + 1
C (f∗ + D), obtained by simply employing the

triangle inequality. Another related example class is induced by coercive self-adjoint
operators F , i.e., f(x) := 〈Fx, x〉 ≥ C‖x‖22 with some constant C > 0 and a scalar
product 〈·, ·〉. The (usually) unknown f∗ appearing above may again be treated
using estimates.
Yet another important class is comprised of functions which have a set of weak

sharp minima [105] over X, i.e., for which there exists a constant µ > 0 such that

f(x)− f∗ ≥ µdX∗(x) ∀x ∈ X. (4.32)

Using dX∗(x) ≤ dX(x) +dX∗(PX(x)) for x ∈ Rn, we can then estimate the distance
of x to X∗ via the weak sharp minima property of f . For instance, knowing some
ϕ ≤ f∗ (e.g., a dual lower bound), (4.32) yields

dX∗(x) ≤ f(x)− ϕ
µ

∀x ∈ X.

Thus, when the bounds on the distance to the optimal set derived from using the
above inequality become too conservative (i.e., too large, resulting in very small
ε̃k-bounds, cf. (4.21)), one could try to improve the above bound by improving the
lower estimate ϕ of f∗.
An important subclass of functions with weak sharp minima is composed of the

polyhedral functions, i.e., f has the form

f(x) = max{ a>i x+ bi : 1 ≤ i ≤ N },

where ai 6= 0 for all i; the scalar µ is then given by

µ = min{ ‖a>i ‖2 : 1 ≤ i ≤ N }.

In practice, one might have access to (problem-specific) estimates of dX∗(x);
in [70], it is claimed that “for most problems” prior experience or heuristical consid-
erations can be used to that end. For instance, if X is compact, the diameter of X
leads to the (conservative) estimate dX∗(x) ≤ diam(X) + dX(x).

4.4.3 Variable Target Values

From a practical viewpoint, it may be desirable to have an algorithm, using dynamic
step sizes, that does not require the user to know a priori whether an estimate ϕ
is larger or smaller than f∗, respectively. Moreover, relying on a constant estimate

4.4. Discussion: Extensions of the ISA Framework 165

may lead to overly small or large steps, which slows down the convergence process
(and, with respect to ISA (Algorithm 4.2), can also lead to many projection accuracy
refinement phases). Thus, a typical approach is to replace the constant estimate ϕ
by variable target values ϕk. These target values are then updated in the course
of the algorithm to increasingly better estimates of f∗, so that the dynamic step
size (4.3) more and more resembles the “ideal” Polyak step size (which would use
ϕ = f∗). In principle, such extensions are also possible for the ISA framework. We
briefly describe the most important aspects in the following, complemented by a
simple example algorithm of this type.
First, recall that Theorems 4.5 and 4.7 provide bounds on the projection accu-

racies (εk) needed for convergence; clearly, if it is unknown whether ϕk ≥ f∗ or
ϕk < f∗, one must therefore choose 0 ≤ εk ≤ min{ε̄k, |ε̃k|, νk}, with ε̄k and ε̃k given
by (4.19) and (4.21), respectively, and with (νk) as in the theorems.
Crucial for any variable target value method is the ability to eventually somehow

recognize whether ϕk ≥ f∗ or ϕk < f∗. If all iterates were feasible, this would
amount to detecting X ∩{x : f(x) ≤ ϕk } 6= ∅ (i.e., f(x) ≤ ϕk, since x ∈ X), which
implies ϕk ≥ f∗, or recognizing X ∩ {x : f(x) ≤ ϕk } = ∅, to infer that ϕk < f∗;
see, e.g., [70]. However, in the case of (possibly) infeasible iterates, fk ≤ ϕk does
not necessarily imply that ϕk is too large. On the other hand, viewing the ISA
iterates xk as points of the “relaxed” feasible set

Bεk−1

X := {x : x = y + z, y ∈ X, ‖z‖2 ≤ εk−1 },

then BεkX ∩ {x : f(x) ≤ ϕk} = ∅ also implies that ϕk < f∗, since X ⊆ BεkX .
In view of Theorem 4.7, keeping ϕk constant once we recognized that ϕk < f∗

ensures convergence of (fk) to f∗ (in practice, it may nevertheless be desirable to
further improve the estimate ϕk in order to avoid overly large steps in the vicinity
of the optimum). The associated case BεkX ∩ {x : f(x) ≤ ϕk } = ∅ can be detected
in practice, see [70, Section III.C] for details in the case of a feasible method; these
results are extensible to the ISA framework with appropriate modifications.
The other case, ϕk ≥ f∗, could be detected, e.g., with the help of an esti-

mate of the Lipschitz constant of f (recall that every convex function is locally
Lipschitz-continuous, and useful estimates should usually be available) and the dis-
tances to X implied by the projection accuracies. More precisely, suppose f is
Lipschitz-continuous with constant L > 0, i.e.,

|f(x)− f(y)| ≤ L ‖x− y‖2 ∀x, y ∈ Rn.

By (4.4) and since replacing xk (Step 8 in a possible refinement phase in Al-
gorithm 4.2) is always done using accuracies γ`εk−1 < εk−1, we know that

166 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

‖xk − PX(xk)‖2 ≤ εk−1 for all k ≥ 0. Thus, for xk = Pγ
`εk−1

X (xk−1 − αk−1h
k−1)

with ` ≥ 0, we have

|f(xk)− f(PX(xk))| ≤ L ‖xk − PX(xk)‖2 = LdX(xk) ≤ Lγ`εk−1 ≤ Lεk−1.

Then, xk ∈ Bεk−1

X and f(xk) ≤ ϕk−1 − Lεk−1 imply that f(PX(xk)) ≤ ϕk−1,
showing that ϕk−1 ≥ f∗. Furthermore, convergence of (fk) to ϕk as in Theorem 4.5,
termination in Step 6 (with hk 6= 0), or convergence to a function value smaller than
or equal to ϕk in case of an infinite refinement phase (` → ∞) would also indicate
that ϕk ≥ f∗, and thus should be taken into account accordingly. (Moreover, note
that for Lipschitz-continuous f , BεkX ∩{x : f(x) ≤ ϕk + Lεk } = ∅ implies ϕk < f∗.)
In the literature, various schemes have been considered as update rules for variable

targets (ϕk), see, e.g., [17, 150, 120, 226, 193, 70, 154, 170]. In principle, many such
rules could be straightforwardly used in, or adapted to, a variable target value ISA.

4.4.3.1 VTV-ISA for Lipschitz-Continuous Objectives

In the remainder of this section, we concretize the previous discussion by present-
ing a specific example of a variable target value ISA (VTV-ISA). The simple target
update rule we use exploits Lipschitz-continuity (though this is not essential, see Re-
mark 4.19 below) of the objective function and the convergence results for constant
targets ϕ from Theorems 4.5 and 4.7. We summarize the scheme in Algorithm 4.3.

Remark 4.17. We point out a few aspects regarding Algorithm 4.3.
1. The target value ϕk in iteration k is defined by reducing the estimate ϕk of f∗

by a constant τ > 0. Variants of this choice are quite common in variable
target methods (see, e.g., [193, 70, 120]); often, τ is itself occasionally adjusted
depending on algorithmic progress. In the usual feasible setting, ϕk ≥ f∗ is
easily maintained and the wish to achieve—if possible—a better objective
value (than ϕk) is intuitively realized by setting the target to ϕk−τ . Here, we
follow the same idea, although ϕk ≤ f∗ does not necessarily always hold (cf.
item 4 below); for simplicity, we keep τ constant throughout the algorithm.

2. If fk ≤ ϕk − Lεk−1, we would know that ϕk ≥ f∗; see the earlier discussion.
However, the target value update (Step 3) employed in the VTV-ISA Algo-
rithm 4.3 (see also Step 12) prevents this case. Indeed, were this to hold, we
would have

fk ≤ ϕk−Lεk−1 = ϕk−Lεk−1−τ ≤ fk+Lεk−1−Lεk−1−τ = fk−τ < fk,

a contradiction. Consequently, if fk ≤ ϕk occurs (Step 5), then at the same

4.4. Discussion: Extensions of the ISA Framework 167

Algorithm 4.3 Variable Target Value ISA for Lipschitz-continuous objectives
Input: starting point x0, sequences (λk), (εk), parameters γ ∈ (0, 1), γε > 0, τ > 0,

some d0 ≥ dX(x0) and Lipschitz-constant L > 0 of f
Output: an (approximate) solution to (4.1)
1: initialize k := 0, ` = −1, x−1 := x0, h−1 := 0, α−1 := 0, ε−1 := d0, ϕ−1 :=∞
2: repeat
3: update target value: ϕk := min{ϕk−1, fk + Lεk−1}, ϕk := ϕk − τ
4: choose a subgradient hk ∈ ∂f(xk) of f at xk
5: if fk ≤ ϕk or hk = 0 then
6: if xk ∈ X and hk = 0 then
7: stop (with xk optimal, showing ϕ = f∗)
8: if xk ∈ X and hk 6= 0, or if γ`εk−1 < γε then
9: set ϕk := ϕk, ϕk := ϕk − τ , and go to Step 5

10: increment ` := `+ 1
11: reset xk := PεX(xk−1 − αk−1h

k−1) for ε = γ`εk−1

12: update ϕk := min{ϕk, fk + Lγ`εk−1}, ϕk := ϕk − τ
13: go to Step 4
14: compute step size αk := λk(fk − ϕk)/‖hk‖22
15: compute the next iterate xk+1 := PεkX (xk − αkhk)
16: reset ` := 0 and increment k := k + 1
17: until a stopping criterion is satisfied

time also fk > ϕk − Lεk−1.
3. If xk ∈ X and hk 6= 0 in Step 8, then ϕk ≥ f∗ holds. In particular, Step 9

maintains ϕk ≥ f∗ and eventually leads to fk > ϕk so that no accuracy
refinement is required.

4. On the other hand, if γ`εk−1 < γε in Step 8, then the ensuing target update
in Step 9 may lead to either ϕk ≥ f∗ or ϕk < f∗. This criterion is intended
to recognize when a refinement loop will be infinite, which would translate
into ϕk ≥ f∗. Indeed, this idea worked correctly if ϕk ≥ f∗ after Step 9.
The other case ϕk < f∗, however, implies that also ϕk < f∗, and while every
refinement loop would then, in principle, be finite, the criterion γ`εk−1 < γε
may lead to premature termination and thus a further reduction of ϕk and ϕk.
(Nevertheless, if εk → 0, the case fk ≤ ϕk will eventually never occur again.
Then, ϕk and ϕk remain constant for all following iterations and Theorem 4.7
can be invoked. This reasoning is made precise in the proof of the convergence
theorem below.)

5. The additional target update in Step 12 can lead to shorter refinement loops
(which is certainly desirable), since now not only fk but also ϕk is (possibly)
updated, increasing the chances that fk > ϕk.

168 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Theorem 4.18 (Convergence of VTV-ISA (Algorithm 4.3)). Let the optimal point
set X∗ be bounded, 0 < λk ≤ β < 2 for all k,

∑∞
k=0 λk =∞ and λk → 0, and let (νk)

be a nonnegative sequence with
∑∞
k=0 νk < ∞. Let εk be defined as in (4.19), and

let ε̃k be defined as in (4.21), each with ϕ replaced by ϕk, respectively.
If the subgradients hk satisfy 0 < H ≤ ‖hk‖2 ≤ H < ∞ and (εk) satisfies

0 ≤ εk ≤ min{εk, |ε̃k|, νk} for all k, then the sequence (fk) of objective function
values of the VTV-ISA iterates (xk) converges to the optimal value f∗.

Proof. Let the assumptions of Theorem 4.18 hold. First, we will show that there
exists some K < ∞ such that ϕK < f∗. Suppose this is not true, i.e., ϕk ≥ f∗ for
all k. Now, we can distinguish two cases:
(i) There is some k̃ such that ϕk = ϕk̃ for all k ≥ k̃, or equivalently, ϕk = ϕk̃ =

ϕk̃−τ stays constant for all following iterations k ≥ k̃. Then (w.l.o.g.), fk > ϕk̃
for all k ≥ k̃, i.e., no refinement loops are executed anymore. (Since εk → 0,
for k large enough and thus εk sufficiently small, Step 9 would otherwise be
executed at the very beginning of a refinement loop, immediately contradicting
the constancy of the target value.) Thus, we can apply Theorem 4.5 and
conclude fk → ϕk̃. But this means that there exists some j > k̃ such that
fj + Lεj−1 < ϕj−1 + τ = ϕj−1, so that the target update in Step 3 yields
ϕj < ϕj−1 (and thus ϕj < ϕj−1), contradicting the fact that the target value
stays constant.

(ii) There is some ϕ ≥ f∗ such that ϕk → ϕ. By construction, the sequences (ϕk)

and (ϕk) are monotonically nonincreasing; in particular, ϕk+1 ≤ ϕk for all k.
Moreover, the refinement loop ensures that fk > ϕk for all k. Now, it is easy
to see that the proof of Theorem 4.5 can be straightforwardly modified to show
that we also have fk → ϕ. However, as εk → 0, this would imply that ϕk → ϕ

as well, whence by construction ϕk → ϕ− τ < ϕ, a contradiction.
Hence, we have established that for some K < ∞, it holds that ϕk < f∗ for all
k ≥ K. Moreover, since εk → 0 and by continuity of f , there exists some K̃ ≥ K

such that fk = f(Pεk−1

X (xk−1 − αk−1h
k−1)) > ϕk for all k ≥ K̃, i.e., from itera-

tion K̃ onwards, the target remains at the constant value ϕK̃ < f∗. (Before, even
though ϕk < f∗, it might have been further reduced by premature refinement loop
termination in Step 9.) In particular, no more refinement loops can occur. Now, we
can invoke Theorem 4.7 and conclude that fk → f∗, as claimed.

Remark 4.19. In fact, one could modify Algorithm 4.3 as follows: Setting γε =∞
essentially disables any projection accuracy refinements, instead simply reducing the
target value each time that fk ≤ ϕk occurs. That way, fk > ϕk is always achieved
after finitely many target updates (Step 9), and eventually, ϕk < f∗ holds and
remains constant from some K < ∞ onwards. Then, convergence of fk → f∗ can

4.5. Examples of Adaptive Approximate Projection Operators 169

be achieved under the same assumptions as in Theorem 4.18 and along the same
lines as in its proof. Moreover, note that the Lipschitz-continuity assumption is
not essential either: Instead of trying to keep an upper bound ϕk of f∗ (although
after premature refinement loop termination, this property might no longer hold
anyway), we could just use any constant initial ϕ0 ∈ R, ϕ0 = ϕ0 − τ , and remove
the Lipschitz-dependent terms (“setting” L = 0).
Nevertheless, contrary to the purpose of working with variable target values in

the first place, these simplified schemes can lead to a behavior much more similar to
that using just some constant target ϕ < f∗ to begin with: If (early) iterates are far
away from X, they may have fk � f∗, which would lead to ϕk � f∗ very early on.

4.5 Examples of Adaptive Approximate Projection
Operators

In this section, we give several detailed examples for constructing adaptive approx-
imate projections that can achieve any given projection accuracy. In view of the
main topic of this thesis, finding sparse solutions of underdetermined linear equation
systems, we first consider the feasible set of problems like (P0) and (P1). Then, we
discuss approximate projection onto (full-dimensional) ellipsoids, before turning to
the constraint set of the denoising problems (Pδ0) and (Pδ1) (which can be viewed as a
degenerate ellipsoid) and variants incorporating other norms. Finally, we will see a
probabilistic construction of a projection operator that addresses convex expected-
value constraints.

4.5.1 Linear Equality Constraints

Consider the problem of projection onto the feasible set X ⊆ Rn given by

X := {x : Ax = b },

where A ∈ Rm×n with rank(A) = m < n. For a given point z, the projection onto X
can be explicitly formulated as

PX(z) = z −A>(AA>)−1(Az − b). (4.33)

170 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

We can split this computation into two steps, namely

v∗ := the solution to AA>v = Az − b, (4.34)

PX(z) = z −A>v∗.

Since A has full rank, AA> is symmetric and positive definite. Hence, we can apply
(for instance) the well-known method of conjugate gradients (CG) [133] to solve the
system in (4.34); cf. Section 1.3 and, for details, the references therein. In exact
arithmetic, CG terminates with the exact solution after at most m iterations. Thus,
letting

v(k) := the approx. solution to AA>v = Az − b after k CG iterations, (4.35)

we have, in particular, v∗ = v(m).
Computing the projection onto X exactly can be very costly, practically prohibit-

ing methods relying on fast projections for such linearly constrained problems. This
motivates the idea to use the CG procedure to obtain approximate projections.
(Another advantage is that for CG, one does not need to explicitly build AA>,
which can be dense even if A itself is very sparse.) In particular, the question we
investigate is: How does a truncated CG procedure (which does not run the full m
iterations theoretically needed for exact solution of the projection problem) fit into
our framework (4.4)? The answer is given by the following result.

Proposition 4.20. Let X := {x : Ax = b } for A ∈ Rm×n with rank(A) = m < n

and b ∈ Rm. Then the mapping PεX defined by

z 7→ PεX(z) := z −A>v(kε), (4.36)

where v(kε) is the approximate solution to AA>v = Az − b obtained after kε CG
iterations (with an arbitrary starting point v(0) ∈ Rm) and

kε := arg min
{
k : ‖AA>v(k) − (Az − b)‖2 ≤ σmin(A) ε

}
,

is an adaptive approximate projection operator for X in the sense of (4.4).

Proof. For v(k) as defined in (4.35), denote the corresponding residual by

r(k) := AA>v(k) − (Az − b).

The proposition states that, for our purpose, we can stop the CG iteration (prema-
turely) as soon as the residual norm ‖r(k)‖2 becomes “small enough”. Specifically,

4.5. Examples of Adaptive Approximate Projection Operators 171

we can bound the distance of the point z − A>v(k) to the exact projection of z,
using (4.33) and the Cauchy-Schwarz inequality:

‖(z −A>v(k))− PX(z)‖2 = ‖z −A>v(k) − (z −A>(AA>)−1(Az − b))‖2

≤ ‖A>(AA>)−1‖2 ‖AA>v(k) − (Az − b)‖2 = ‖A†‖2 ‖r(k)‖2 =
‖r(k)‖2
σmin(A)

.

Consequently, stopping the CG method as soon as, for a given projection accuracy ε,
it holds that

‖r(k)‖2 ≤ σmin(A) ε (4.37)

ensures that the procedure given by (4.36) yields an adaptive approximate projection
operator of type (4.4).

Remark 4.21. It is easy to see that the above proof is independent of the algorithm
used to compute v(kε); in particular, the requirement (4.37) on the respective residual
always ensures conformity to (4.4) of the constructed adaptive projection operator.
Therefore, in principle, one could use any suitable iterative and convergent algorithm
in the above setting, although the CG method is perhaps the most natural choice
(and has the practically desirable property of not needing AA> explicitly).

4.5.1.1 Connection with Related Notions of Approximate Projection

In the context of the subgradient method proposed in [201], approximate projections
onto a closed convex set C are called feasibility operators, denoted by FC , and need
to obey the following criterion, which is closely related to Féjer-monotonicity (but
slightly more restrictive):

∀ δ > 0 ∃ εδ > 0 ∀ z, dC(z) ≥ δ : ‖FC(z)− x‖2 ≤ ‖z − x‖2 − εδ ∀x ∈ C.
(4.38)

Moreover, it is required that FC(x) = x for all points x ∈ C. Thus, (4.38) ensures
that a feasibility operator produces a point that is closer to every (feasible) point
in C than the (infeasible) unprojected point z /∈ C. The technical, or conceptual,
differences between the inexact projections based on (4.4) and (4.38), respectively,
were discussed earlier in Section 4.1.2.
It turns out that a truncated CG procedure with any fixed number of iterations

yields a feasibility operator in the sense of (4.38).

Proposition 4.22. Let K ∈ [m] be arbitrary and let v(K) denote the approximate
solution to AA>v = Az − b obtained after K CG iterations using the starting point
v(0) = 0. Then, FKX (z) := z −A>v(K) is a feasibility operator satisfying (4.38).

172 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Proof. Note that by construction, for any integer K ≥ 0, the point FKX (z) lies in the
subspace z+R(A>). Moreover, R(A>) corresponds to the normal cone of X (at any
feasible point and therefore, in particular, at PX(z) for any z ∈ Rn; cf. page 59).
Hence, FKX (z) is obtained by taking a step along a normal direction, thus reducing
the distance to every point in X if and only if that to PX(z) is reduced. Therefore,
(4.38) can be verified directly by showing that for K ≥ 1, we always obtain a point
that is strictly closer to PX(z) than z, and that the difference of these distances is
bounded by some εδ, i.e., in dependence of the lower distance bound δ of z to the
feasible set. We proceed to do just that.
With starting point v(0) = 0, we have for all k = 1, . . . ,K that

v(k) ∈ span{Az − b, (AA>)(Az − b), . . . , (AA>)k−1(Az − b)} =: Kk,

i.e., v(k) lies in the k-th Krylov subspace Kk associated with the system we wish to
solve. Moreover, the CG method is applied to a certain type of normal equation here,
and v(k) minimizes the energy norm (w.r.t. AA>) of the error over Kk, cf. [227], [222,
Section 8.3.2]. More precisely, with the exact solution v∗ = (AA>)−1(Az − b) (as
in (4.34)), it holds that

v(k) = arg min
v∈Kk

(v∗ − v)>AA>(v∗ − v) = arg min
v∈Kk

‖A>(v∗ − v)‖22

= arg min
v∈Kk

‖A>
(
(AA>)−1(Az − b)− v

)
‖22 = arg min

v∈Kk
‖A>v −A†(Az − b)‖22,

and in fact, writing ψ(v) := ‖A>v −A†(Az − b)‖22, we have (cf. [133, Section 6])

ψ(v(k)) < ψ(v(`)) for all k > ` (k ≤ m). (4.39)

By (4.33), the distance of z to X is dX(z) = ‖A†(Az − b)‖2. Furthermore,

‖FKX (z)− PX(z)‖22 = ‖z −A>v(K) − z +A†(Az − b)‖22 = ψ(v(K)),

so that in particular, with v(0) = 0, we obtain

ψ(v(0)) = ‖A>v(0) −A†(Az − b)‖22 = ‖A†(Az − b)‖22 = dX(z)2.

Therefore, due to (4.39),

‖FKX (z)− PX(z)‖22 < dX(z)2 for all K ∈ [m],

and FKX (z) is in fact closer to every feasible point x ∈ X than z (recall the discussion
at the beginning of this proof).

4.5. Examples of Adaptive Approximate Projection Operators 173

Moreover, since ψ(v(k)) is strictly monotonically decreasing in k, we can bound
the reduction εδ in distance to X from below by that achieved in the first of K ≥ 1

CG iterations, namely,

εδ ≥
‖Az − b‖42

‖A>(Az − b)‖22
.

To see this, note that with starting point v(0) = 0, the first CG iteration produces
v(1) = (‖Az − b‖22/‖A>(Az − b)‖22)(Az − b), and we therefore obtain

ψ(v(1)) = ‖F1
X(z)− PX(z)‖22 = ‖z −A>v(1) − (z −A†(Az − b))‖22

=

∥∥∥∥z − ‖Az − b‖22
‖A>(Az − b)‖22

A>(Az − b)− z +A>(AA>)−1(Az − b)
∥∥∥∥2

2

=

∥∥∥∥ ‖Az − b‖22
‖A>(Az − b)‖22

A>(Az − b)
∥∥∥∥2

2

+ dX(z)2 − 2
‖Az − b‖42

‖A>(Az − b)‖22

= dX(z)2 − ‖Az − b‖42
‖A>(Az − b)‖22

.

This completes the proof.

Remark 4.23. It should be noted that using the construction suggested in [201,
Section 3.2], we can obtain the feasibility operator

FX(z) =

{
z − ν ‖Az−b‖22

‖A>(Az−b)‖22
A>(Az − b), z /∈ X

z, z ∈ X

by rewriting the constraint Ax = b as 1
2‖Ax− b‖

2
2 ≤ 0. For every ν ∈ (0, 2), this

construction obeys (4.38). It can easily be seen that FX(z) differs from F1
X(z) only

in the relaxation factor ν, and that the value of ν for which FX(z) = F1
X(z), i.e.,

ν = 1, is in fact the one that minimizes the distance from FX(z) to PX(z). (Recall
also that the first step of the CG method corresponds to a specific gradient descent
step [227], whence taking z−A>v(1) is the same as using ν = 1 above (for z /∈ X).)
Moreover, note that the feasibility operator construction from [201, Section 3.2]

corresponds precisely to what is called “subgradient projections” in the context of
convex feasibility problems (see, e.g., [16] and the discussion of different approaches
to approximate projections in Section 4.1.2). Such projections can often offer a
very simple way to construct feasibility operators; however, we shall see an example
where this approach is not applicable later, in Section 4.5.4.

Remark 4.24. Using a truncated CG-procedure, we are in fact in the general frame-
work of [16]. Therefore, if ϕ = f∗, Theorem 4.9 is also applicable when employing

174 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

the adaptive approximate projection from Proposition 4.22 (even with K = 1).

4.5.2 Ellipsoids

Ellipsoidal (quadratic) constraints form another important class of constraints in
optimization with many practical applications. Consider an ellipsoid

E := { y : y>Sy ≤ α } ⊂ Rn,

where S ∈ Rn×n is a symmetric positive definite matrix and α > 0. In the following,
we shall assume w.l.o.g. that α = 1 (other values can be dealt with by replacing S
with 1

αS).
For a given point w ∈ Rn, the projection problem onto E is

PE(w) := arg min
y
‖w − y‖2 s.t. y ∈ E. (4.40)

A Lagrangean approach to (4.40), see, e.g., [151], leads to

PE(w) = (µ∗S + I)−1w, (4.41)

where µ∗ > 0 is the unknown Lagrange multiplier whose value must be chosen such
that the projected point lies on the boundary of the ellipsoid, i.e.,

PE(w)>S PE(w) = 1.

For an adaptive approximate projection, we can employ sequences (µk) and (µk)

such that
µk ≤ µ∗ ≤ µk for all k, (4.42)

and
µk ↗ µ∗ and µk ↘ µ∗ monotonically as k →∞. (4.43)

In [151], three algorithms were suggested for computing µ∗. The first two
(quadratically convergent) algorithms apply a Newton scheme to compute sequences
of lower and upper bounds, respectively, which have the desired properties. The
third algorithm is a type of nonlinear Newton scheme which empirically outper-
forms both other algorithms (see the experiments in the cited work); there, another
sequence approaching µ∗ from below is computed, which could be used for our pur-
poses as well.

4.5. Examples of Adaptive Approximate Projection Operators 175

Define µ̂k := (µk + µk)/2; then, clearly, µ̂k → µ∗ as k →∞, and

|µ̂k − µ∗| ≤ µk − µ̂k = µ̂k − µk =
1

2
(µk − µk). (4.44)

Moreover, we shall denote the exact projection (4.41) by y∗ and the sequential
approximations to y∗ based on (µ̂k) (and thus (µk) and (µk)) by

yk := (µ̂kS + I)−1w.

In the following lemma, we gather some auxiliary results and observations.

Lemma 4.25. Let S, µ∗, and µ̂k be defined as above. The following statements
hold:
(i) (µ̂kS + I)−1 − (µ∗S + I)−1 is symmetric.
(ii) For any µ > 0, all eigenvalues of (µS + I)−1 are contained in (0, 1).
(iii) For any invertible matrices A and B, it holds that A−1 + B−1 = A−1(A +

B)B−1.

Proof. The first statement is trivial: µS + I is clearly symmetric for any µ ∈ R,
hence so is its inverse if it exists (which it does, e.g., if µ ≥ 0, and in particular for
µ∗, µ̂k > 0), and the sum of two symmetric matrices is again symmetric. Regarding
(ii), observe that the eigenvalues of µS + I are precisely µλi + 1, i = 1, . . . , n,
where λi is the i-th eigenvalue of S. Thus, the eigenvalues of the inverse are 0 <

1/(1 + µλi) < 1 for all i, since λi > 0 (by the positive definiteness of S) and µ > 0.
The third statement is easily checked; a proof can be found in [225, p.151].

The following result specifies an adaptive approximate projection onto ellipsoids
that fits our framework.

Proposition 4.26. Let E := { y : y>Sy ≤ 1 } for S ∈ Rn×n symmetric positive
definite. Then the mapping PεE defined by

w 7→ PεE(w) := ykε = (µ̂kεS + I)−1w,

where
kε := arg min

{
k : µk − µk ≤

(
2

λmax(S) ‖w‖2

)
ε

}
and, for every k ≥ 0, µ̂k := (µk+µk)/2 with sequences (µk) and (µk) obeying (4.42)
and (4.43) (e.g., generated by the respective algorithms from [151]), is an adaptive
approximate projection operator for E in the sense of (4.4).

176 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Proof. Let S, w and ε be given. Then,

‖yk − y∗‖2 ≤ ‖(µ̂kS + I)−1w − (µ∗S + I)−1w‖2
= ‖

(
(µ̂kS + I)−1 − (µ∗S + I)−1

)
w‖2

= ‖
(
(µ̂kS + I)−1((µ̂k − µ∗)S + I − I)(−µ∗S − I)−1

)
w‖2

= |µ̂k − µ∗| · ‖(µ̂kS + I)−1S(−µ∗S − I)−1w‖2
≤ |µ̂k − µ∗| · ‖(µ̂kS + I)−1‖2 ‖S‖2 ‖−(µ∗S + I)−1‖2 ‖w‖2

≤ 1

2
(µk − µk)λmax(S)‖w‖2.

(The second equality is due to Lemma 4.25(iii), the second inequality is an ap-
plication of the Cauchy-Schwarz inequality, and the last inequality follows from
Lemma 4.25(ii), (4.44), and since for symmetric matrices, the spectral norm equals
the largest eigenvalue.)
Clearly, we therefore have

µkε − µkε ≤
(

2

λmax(S)‖w‖2

)
ε ⇒ ‖PεE(w)− PE(w)‖2 = ‖ykε − y∗‖2 ≤ ε,

which concludes the proof.

Other specialized algorithms for projection onto ellipsoids exist; see, e.g., [74] for
ellipsoids of the (more general) form { y : y>Qy + q>y ≤ α } with Q symmetric
positive definite. Moreover, one could of course employ generic solvers for quadrat-
ically constrained convex quadratic programs (see, e.g., [38]), since the projection
problem (4.40) is obviously of this form.

4.5.3 Denoising Constraints

Recall the Basis Pursuit Denoising problem

min ‖x‖1 s.t. ‖Ax− b‖2 ≤ δ, (Pδ1)

where A ∈ Rm×n with rank(A) = m ≤ n, b ∈ Rm and δ > 0. Note that the feasible
set

Xδ := {x : ‖Ax− b‖2 ≤ δ } = {x : x>(A>A)x− 2(b>A)x ≤ δ2 − ‖b‖22 } ⊂ Rn

is an ellipsoid. However, whenever m < n, this ellipsoid is degenerate since A>A
then is rank-deficient. The algorithms for projection onto ellipsoids mentioned in the

4.5. Examples of Adaptive Approximate Projection Operators 177

previous subsection are only shown to converge in the nondegenerate case. There-
fore, we will take a different approach in the following.
Note that the projection problem for a given point z ∈ Rn onto the constraint

set Xδ of (Pδ1) can be written as

min
x∈Rn

fp(x) + gp(Ax), (4.45)

where fp(x) := 1
2‖x− z‖

2
2 and gp(x) := ι{ v : ‖v−b‖2≤δ }(x). We obtain the following

result.

Proposition 4.27. The dual problem of (4.45) is

max
y∈Rm

(Az − b)>y − δ‖y‖2 − 1
2‖A

>y‖22. (4.46)

Moreover, if y∗ is an optimal solution of (4.46), then x∗ := z −A>y∗ is an optimal
solution of (4.45).

Proof. By Fenchel-Rockafellar duality (Lemma 1.3), the dual of (4.45) is

max
y∈Rm

−f∗p (−A>y)− g∗p(y),

where f∗p and g∗p are the conjugate functions of fp and gp, respectively. In the proof
of Lemma 1.5 (see p. 15), we already saw that g∗p(y) = b>y + δ‖y‖2. Moreover,
it is easily verified (using the first-order optimality condition ∇f∗p (v) = 0) that
f∗p (v) = z>v + 1

2‖v‖
2
2. Hence, the dual problem of (4.45) reads

max − (−z>A>y + 1
2‖−A

>y‖22)− (b>y + δ‖y‖2)

= max (Az − b)>y − δ‖y‖2 − 1
2‖A

>y‖22,

as claimed. Moreover, strong duality holds, since the primal and dual problems are
both always feasible and attain finite optima.
To show the second statement, let y∗ be an optimal dual solution and assume

w.l.o.g. that z /∈ Xδ := {x : ‖Ax− b‖2 ≤ δ } (otherwise, trivially, y∗ = 0 and
x∗ = z). The saddle-point property from Lemma 1.3 yields

x∗ = arg min
x∈Rn

(Ax)>y∗ + fp(x)− g∗p(y∗)

= arg min
x∈Rn

x>A>y∗ + 1
2‖x− z‖

2
2 − b>y∗ − δ‖y∗‖2,

for which the first-order optimality condition (setting the objective gradient to zero)
immediately gives the claimed identity x∗ = z−A>y∗. This completes the proof.

178 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

Remark 4.28. The result from Proposition 4.27 is not new; see, for instance, [111,
Section 15.2] or the more general duality results [69, Propositions 3.3 and 3.4].

The strong duality statements of Proposition 4.27 allow us to solve the projection
problem via its dual, which in turn can be cast as an unconstrained smooth convex
minimization problem:

(4.46) = − min
y∈Rm

−(Az − b)>y + δ‖y‖2 + 1
2‖A

>y‖22. (4.47)

Various iterative algorithms can be applied to solve this type of problem. For our
purposes, i.e., to construct an adaptive approximate projection in the sense of (4.4),
we are particularly interested in (nonasymptotic) convergence rates for such meth-
ods. More precisely, we wish to estimate the rate by which a sequence of primal
approximations (xk) of x∗, obtained as in Proposition 4.27 from some algorithm (for
(4.47)), converges to x∗. To that end, we start with the following observations.

Lemma 4.29. Let Fd(y) denote the objective function of (4.47) and let (x∗, y∗) be a
primal-dual optimal pair for (4.45) and (4.46) (or equivalently, (4.47)). Let ŷ ∈ Rm
be arbitrary, and associate with it a point x̂ := z−A>ŷ ∈ Rn. Finally, let C ≥ 0 be
an arbitrary real constant. Then the following holds:
(i) If ‖ŷ − y∗‖2 ≤ C then ‖x̂− x∗‖2 ≤ C‖A‖2.
(ii) If Fd(ŷ)− Fd(y∗) ≤ C then ‖x̂− x∗‖2 ≤

√
2C.

Proof. The first statement is easy to see: Suppose ‖ŷ − y∗‖2 ≤ C. Then, by con-
struction and by Proposition 4.27,

‖x̂− x∗‖2 = ‖z −A>ŷ − (z −A>y∗)‖2 = ‖A>(ŷ − y∗)‖2
≤ ‖ŷ − y∗‖2‖A>‖2 ≤ C‖A‖2.

For the second statement, consider the first-order optimality condition for (4.46):

−(Az − b) + δ
y∗

‖y∗‖2
+AA>y∗ = 0 ⇔ Az − b = δ

y∗

‖y∗‖2
+AA>y∗.

Thus, we obtain:

Fd(ŷ)− Fd(y∗)
= (Az − b)>(y∗ − ŷ)− δ(‖y∗‖2 − ‖ŷ‖2)− 1

2 (‖A>y∗‖22 − ‖A>ŷ‖22)

= δ‖y∗‖2 − δ
(y∗)>(ŷ)

‖y∗‖2
+ ‖A>y∗‖22 − (y∗)>AA>(ŷ)− δ‖y∗‖2 + δ‖ŷ‖2

− 1
2 (‖A>y∗‖22 − ‖A>ŷ‖22)

4.5. Examples of Adaptive Approximate Projection Operators 179

= δ‖ŷ‖2 − δ
(y∗)>(ŷ)

‖y∗‖2
+ 1

2‖A
>(y∗ − ŷ)‖22

= δ‖ŷ‖2 − δ
(y∗)>(ŷ)

‖y∗‖2
+ 1

2‖z − x
∗ − (z − x̂)‖22

≥ δ‖ŷ‖2 − δ‖ŷ‖2 + 1
2‖x
∗ − x̂‖22 = 1

2‖x̂− x
∗‖22.

The inequality above follows from the Cauchy-Schwarz inequality, which implies
that

(ŷ)>
(y∗

‖y∗‖2

)
≤ ‖ŷ‖2

∥∥∥∥ y∗

‖y∗‖2

∥∥∥∥
2

= ‖ŷ‖2.

Hence, we see that if Fd(ŷ)− Fd(y∗) ≤ C, then ‖x̂− x∗‖2 ≤
√

2C.

By the above lemma, we can exploit all (nonasymptotic) convergence rate results
that either pertain to the convergence of the dual function values or the dual iter-
ates (yk) to derive rates for the associated sequence of primal iterates (xk), taking
xk := z−A>yk for all k. Typically, convergence rates for function values do not im-
ply rates for the iterates, and nonasymptotic rates directly involving the iterates are
arguably less common. Hence, the flexibility provided by Lemma 4.29 with respect
to the subject of convergence rates is clearly advantageous regarding the choice of
suitable algorithms.
As mentioned earlier, and as bolstered by the previous lemma, we could em-

ploy various methods (with known convergence rates) to solve (4.46) (or equiva-
lently, (4.47)), such as the standard gradient method (see, e.g., [24]) or the proximal
point algorithm (see, e.g., [220]). For the sake of exposition, we shall apply the
methods ISTA and FISTA from [18] to derive adaptive approximate projections
for Xδ in the following.
Consider the following composite view on the problem (4.47):

min Fd(y) = min fd(y) + gd(y),

with fd(y) := −(Az − b)>y + 1
2‖A

>y‖22 and gd(y) := δ‖y‖2. Note that the gradient
of fd, i.e., ∇fd(y) = −(Az − b) + AA>y, is Lipschitz-continuous with (smallest)
Lipschitz constant Lfd := ‖A‖22 = λmax(AA>) = σmax(A)2: For all y1, y2 ∈ Rm, it
holds that

‖∇fd(y1)−∇fd(y2)‖2 = ‖AA>(y1 − y2)‖2
≤ ‖AA>‖2‖y1 − y2‖2 = ‖A‖22‖y1 − y2‖2.

The constant step size ISTA [18], applied to (4.47), consists of the iterate update

180 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

rule (for k ≥ 0)

yk+1 := yk +
1

L

(
A(z −A>yk)− b

)
− 1

L
PBδ2 (Lyk +A(z −A>yk)− b)

=
1

L

[
Id− PBδ2

]
(Lyk +A(z −A>yk)− b), (4.48)

where y0 ∈ Rm can be chosen arbitrarily, L ≥ Lfd , Id denotes the identity operator,
and PBδ2 is the projection onto the `2-norm ball of radius δ, i.e.,

PBδ2 (q) =

(
1

max{1, ‖q‖2/δ}

)
q. (4.49)

(For the sake of brevity, we omit the derivation of (4.48); it is straightforwardly
obtained from applying the respective general formulas from [18] to (4.47), or as a
special case of more general splitting methods like, e.g., [69, Algorithm 3.5].) The
following convergence rate result derives from [18, Theorem 3.1], and holds for any
dual optimal solution y∗ (of which there is at least one [69]):

Fd(y
k)− Fd(y∗) ≤

Lfd
2k
‖y0 − y∗‖22 for any k ≥ 1. (4.50)

In particular, this implies that the iteration number required to reach an ε-optimal
solution ŷ, i.e., such that Fd(ŷ) − Fd(y∗) ≤ ε, is at most d((Lfd/2)‖y0 − y∗‖22)/εe,
see [18]. Combined with Lemma 4.29, we thus obtain the following result.

Proposition 4.30. Let (yk) be generated by (4.48) with a fixed L ≥ ‖A‖22 and some
y0 ∈ Rm. Let (xk) be the associated primal iterate sequence given by xk := z−A>yk
for all k, and let ε > 0 be given. Then the mapping PεXδ,ISTA defined by

z 7→ PεXδ,ISTA(z) := xkε ,

where

kε :=

⌈
‖A‖22 ‖y0 − y∗‖22

ε2

⌉
,

is an adaptive approximate projection in the sense of (4.4). Alternatively, kε can
be replaced by the upper bound

k̂ε :=

⌈
L

ε2

(
‖y0‖2 +

‖Az − b‖2 + δ

σmin(A)

)2
⌉
.

Proof. To achieve a prescribed accuracy of ε in the sense of (4.4), i.e., such that
‖xk − x∗‖2 ≤ ε, we know from Lemma 4.29 and (4.50) that we must ensure Fd(yk)−

4.5. Examples of Adaptive Approximate Projection Operators 181

Fd(y
∗) ≤ ε2/2. Plugging this into the iteration number estimate following from

[18, Theorem 3.1], we obtain kε as defined above. By substituting with suitable
estimates, we can only worsen this bound (i.e., increase the implied iteration number
which guarantees the desired projection accuracy). In particular, we can employ
‖A‖22 = Lfd ≤ L as in the algorithm, and ‖y0 − y∗‖2 ≤ ‖y0‖2 + ‖y∗‖2, where y0 is
known from the initialization and since x∗ = z−A>y∗ implies AA>y∗ = A(z−x∗),
and AA> is invertible,

‖y∗‖2 = ‖(AA>)−1(Az −Ax∗)‖2 = ‖(AA>)−1
(
(Az − b)− (Ax∗ − b)

)
‖2

≤ ‖(AA>)−1‖2
(
‖Az − b‖2 + ‖Ax∗ − b‖2

)
=
‖Az − b‖2 + δ

σmin(A)
.

These estimates precisely yield the claimed upper bound k̂ε.

Remark 4.31. Note that, strictly speaking, kε is undefined for ε = 0. However,
since limkε→∞ P

kε
Xδ,ISTA

(z) = limε↘0 PkεXδ,ISTA(z) = P0
Xδ

(z), practical convergence
(to within numerical machine precision) is of course always achieved after finitely
many iterations.

In [18], the convergence rate of ISTA was improved to O(1/k2) with a slight
modification similar to Nesterov’s accelerated gradient scheme [198] (see also [199,
200]), resulting in the constant step size FISTA algorithm:

yk :=
1

L

[
Id− PBδ2

]
(Luk +A(z −A>uk)− b), (4.51)

tk+1 := (1 +
√

4t2k + 1)/2, (4.52)

uk+1 := yk +
(tk − 1

tk+1

)
(yk − yk−1), (4.53)

for k ≥ 1, with some L ≥ Lfd = ‖A‖22, t1 := 1, y0 ∈ Rm arbitrary, and u1 := y0.
Using Lemma 4.29, we obtain the following result using FISTA.

Proposition 4.32. Let (yk) be generated by (4.51)–(4.53) with some L ≥ ‖A‖22, an
arbitrary y0 ∈ Rm, t1 := 1 and u1 := y0. Let (xk) be the associated primal iterate
sequence, with xk := z − A>yk for all k, and let ε > 0 be given. Then the mapping
PεXδ,FISTA defined by

z 7→ PεXδ,FISTA(z) := xkε ,

where

kε :=

⌈
2‖A‖2 ‖y0 − y∗‖2

ε
− 1

⌉
,

182 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

is an adaptive approximate projection in the sense of (4.4). Alternatively, kε can
be replaced by the upper bound

k̂ε :=

⌈
2
√
L

ε

(
‖y0‖2 +

‖Az − b‖2 + δ

σmin(A)

)
− 1

⌉
.

Proof. For any dual optimal solution y∗, [18, Theorem 4.4] provides the convergence
rate estimate

Fd(y
k)− Fd(y∗) ≤

2Lfd
(k + 1)2

‖y0 − y∗‖22 for any k ≥ 1, (4.54)

which implies that FISTA needs at most
⌈√

2Lfd ‖y0 − y∗‖2/
√
ε− 1

⌉
iterations to

reach a point ŷ with Fd(ŷ)− Fd(y∗) ≤ ε. The remainder of the proof is completely
analogous to that of Proposition 4.30.

Remark 4.33. Naturally, Remark 4.31 applies to PεXδ,FISTA as well. Moreover,
the following points are noteworthy.

1. For both ISTA and FISTA, there are backtracking variants in which estimates
of Lfd are computed dynamically in each iteration, see [18]. The respective
convergence rates (4.50) and (4.54) change only by a constant factor, whence
the (primal) rates exploited in Propositions 4.30 and 4.32 to obtain our adap-
tive approximate projections can be straightforwardly extended to accommo-
date backtracking as well.

2. The ISTA algorithm from [18] can be seen as a simple special instance of the
broad classes of (proximal) forward-backward splitting methods or monotone
operator splitting algorithms, see, e.g., [71, 72, 250, 243, 104, 57]. Its con-
vergence to an optimal solution y∗ is in fact also guaranteed for variable step
sizes γk replacing the constant 1/L, for γk ∈ (0, 2/‖A‖22), in more general
Hilbert space settings, and when augmented with various possible extensions
such as, e.g., allowing summable errors in operator evaluations (see, e.g., the
aforementioned references). Moreover, the application (4.48) to projection
onto Xδ via the dual problem was briefly sketched in [104] (see Lemma 2 and
Proposition 6 there), specializing and applying a method from [72]; it can also
be derived directly from [57].
ISTA can also be seen as a constant-step special case (alternatively, as the
limiting case ε = 1/‖A‖22) of the method from [69, Proposition 4.2], in
which the step sizes (γk) are taken from the interval [ε, 2/‖A‖22 − ε] with
ε ∈ (0,min{1, 1/‖A‖22}).

3. For the case that A is a tight frame, i.e., AA> = c I for some c 6= 0, the

4.5. Examples of Adaptive Approximate Projection Operators 183

projection onto Xδ has a closed form solution, see, e.g., [104, Lemma 2(i)]:

PXδ(z) = z − 1

c
A>
[
PBδ2 − Id

]
(Az − b).

4. Implementations of ISTA (4.48) and FISTA (4.51)–(4.53) can be found
in the Matlab package “UNLocBoX”, available from http://unlocbox.
sourceforge.net/, which contains several more related projection or prox-
imity operators (see, e.g., [71] for numerous examples of this generalization of
the notion of projections).

4.5.3.1 Generalization to Variants of Denoising Constraints

When the denoising constraint ‖Ax− b‖2 ≤ δ is replaced by analogues using other
`p-norms (with p ≥ 1), the same algorithms discussed above can be employed with
the modification of replacing PBδ2 by the projection onto the respective `p-balls. This
fact was pointed out in [104] (in connection with a different but related splitting
method) and can also be seen from [69, Section 4.1], where the general problem under
consideration covers projection problems onto feasible sets w.r.t. constraints of the
form Ax−b ∈ C for some closed convex set C, and the proposed algorithmic scheme
contains ISTA as a special case (cf. Remark 4.33 above); of course, corresponding
FISTA variants work analogously.
In particular, we obtain the following results:

Proposition 4.34. Let p ≥ 1 and denote Bδp := {x : ‖x‖p ≤ δ }.
(i) The dual problem of projecting a point z ∈ Rn onto the set Xp

δ := {x :

‖Ax− b‖p ≤ δ } reads

max
y∈Rm

(Az − b)>y − δ‖y‖∗p − 1
2‖A

>y‖22. (4.55)

With y∗(p) denoting the optimal solution of (4.55), it holds that PXpδ (z) =

z −A>y∗(p).
(ii) Let (yk(p)) := (yk) be generated by ISTA (4.48) (with L ≥ ‖A‖22 and y0 ∈ Rm),

in which PBδ2 is replaced by PBδp . Moreover, let (xk(p)) be the associated primal
iterate sequence, with xk(p) := z−A>yk(p) for all k, and let ε > 0 be given. Then
the mapping Pε

Xpδ ,ISTA defined by

z 7→ PεXpδ ,ISTA(z) := x
kISTA
ε

(p) , where kISTA
ε :=

⌈
‖A‖22 ‖y0 − y∗(p)‖

2
2

ε2

⌉
,

http://unlocbox.sourceforge.net/
http://unlocbox.sourceforge.net/

184 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

is an adaptive approximate projection for Xp
δ in the sense of (4.4). Alterna-

tively, kISTA
ε can be replaced by the upper bound

k̂ISTA
ε :=

L

ε2

‖y0‖2 +
‖Az − b‖2 + max

{
1, n

1
2−

1
p

}
δ

σmin(A)

2
 .

(iii) Let (yk(p)) := (yk) be generated by FISTA (4.51)–(4.53) (with L ≥ ‖A‖22,
y0 ∈ Rm, t1 := 1 and u1 := y0), in which PBδ2 is replaced by PBδp . Moreover,
let (xk(p)) be the associated primal iterate sequence, with xk(p) := z−A>yk(p) for
all k, and let ε > 0 be given. Then the mapping Pε

Xpδ ,FISTA defined by

z 7→ PεXpδ ,FISTA(z) := x
kFISTA
ε

(p) , where kFISTA
ε :=

⌈
2‖A‖2 ‖y0 − y∗(p)‖2

ε
− 1

⌉
,

is an adaptive approximate projection for Xp
δ in the sense of (4.4). Alterna-

tively, kFISTA
ε can be replaced by the upper bound

k̂FISTA
ε :=

2
√
L

ε

‖y0‖2 +
‖Az − b‖2 + max

{
1, n

1
2−

1
p

}
δ

σmin(A)

− 1

 .
Proof. Proceeding as for ι{ v : ‖v−b‖2≤δ }(x) in the proof of Lemma 1.5, we obtain the
conjugate function of g(x) := ι{ v : ‖v−b‖p≤δ }(x) as

g∗(y) = max
x
{ y>x : ‖v − b‖p ≤ δ } = b>y + δ ‖y‖∗p. (4.56)

The remainder of the proof for part (i) is completely analogous to that of Proposi-
tion 4.27.
Parts (ii) and (iii) immediately follow from the preceding discussion; in partic-

ular, Propositions 4.30, 4.32 and part (i) above. (The alternative iteration num-
bers are obtained by extending the estimate for ‖y∗‖2 from the proof of Proposi-
tion 4.30: For p ≤ 2, ‖Ax∗ − b‖2 ≤ ‖Ax∗ − b‖p ≤ δ, and for p ≥ 2, ‖Ax∗ − b‖2 ≤
n(1/2−1/p)‖Ax∗ − b‖p ≤ n(1/2−1/p) δ, with the usual convention 1/∞ = 0. Since
n ≥ 1, the factor max{1, n(1/2−1/p)} correctly adapts to both cases.)

In view of (4.56), recall, in particular, that ‖·‖∗1 = ‖·‖∞ and ‖·‖∗∞ = ‖·‖1.
For practical applications of (F)ISTA in the above context, note that the pro-

jection of a point z onto Bδp ⊂ Rm should be simple to compute, which is indeed
the case for p ∈ {1, 2,∞}: PBδ2 (z) = z/max{‖z‖2/δ, 1} (see (4.49) earlier), PBδ∞(z)

4.5. Examples of Adaptive Approximate Projection Operators 185

is given componentwise by zi/max{|zi|/δ, 1}, and the projection onto Bδ1 is also
realizable in linear time O(m), see [246, 96].
To conclude, the above results (together with those of Section 4.5.1) show that

ISA is applicable to various prominent problems in CS Sparse Recovery. Further
details of the ISA adaption to `1-minimization will be given in Section 4.6 below
(see, in particular, Theorems 4.36 and 4.38).

4.5.4 Convex Expected Value Constraints

To conclude our set of examples for the adaptive approximate projection employed
in the ISA framework, let us consider expected value constraints [215, 164] of the
following form

g(x) := E[f(x;ω)] =

∫
Rq
f(x;ω) p(ω) dω ≤ η, (4.57)

where E denotes the expected value, ω ⊆ Rq is a vector of random variables with
density p, x are deterministic variables in Rn, f : Rn × Rq → R, and η ∈ R. If f
is convex in x for every ω, (4.57) is a convex constraint. Expected value constraints
appear in stochastic programming as, for instance, the expectational form of chance
constraints, see, e.g., [56, 28], or when modeling expected loss or Value-at-Risk via
integrated chance constraints, see, e.g., [156, 146, 157].
In general, g(x) cannot easily be computed exactly [37]; however, it can be ap-

proximated using Monte Carlo methods if samples of ω can be (cheaply) generated:
Taking k independent samples ω1, . . . , ωk yields the approximation

ĝk(x) :=
1

k

k∑
i=1

f(x;ωi)

of g(x). Moreover, assume that we can compute a subgradient G(x;ω) ∈ ∂xf(x;ω)

for each value of x and ω. Thus, we have

h := E[G(x;ω)] =

∫
Rq
G(x;ω)p(ω)dω ∈ ∂g(x).

We then use the approximation

ĥk := ĥk(x) :=
1

k

k∑
i=1

G(x;ωi),

186 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

which is a “noisy unbiased subgradient” of g at x, see [37] for details. Then E[ĥk] =

h ∈ ∂g(x). Note that the unbiasedness of ĝk(x) and ĥk is in fact independent of k,
i.e., even for k = 1 we have unbiased estimators ĝ1(x) and ĥ1, though of course
they should be rather poor approximations of the true values. Large k, on the other
hand, likely yield good approximations; in fact, limk→∞ ĝk(x) = E[ĝk(x)] = g(x)

and limk→∞ ĥk = E[ĥk] = h.
Consider the problem min{ ‖z − x‖22/2 : g(x) ≤ η } of projecting a point z onto

the set C := {x : g(x) ≤ η }. The (necessary and sufficient) optimality conditions
for the projection problem can easily be derived from, e.g, [221, Theorem 3.34], and
read:

−z + x∗ + µ∗ h∗ = 0 for some h∗ ∈ ∂g(x∗),

µ∗(g(x∗)− η) = 0,

g(x∗) ≤ η, µ∗ ≥ 0. (µ∗ ∈ R)

Moreover, for z /∈ C, it must in fact hold that the (Lagrange) multiplier µ∗ > 0

(because otherwise, x∗ = PC(z) = z, which holds if and only if z ∈ C) and con-
sequently, by the second condition above (complementary slackness), g(x∗) = η.
Then, the idea is to replace g(x∗) and h∗ by the respective (Monte Carlo) estimates
ĝk(x) and ĥk. An adaptive approximate projection is obtained by solving (for µ)

x̂ := z − µ ĥk, ĝk(x̂) = η. (4.58)

For an appropriate sampling process, we can adaptively control the resulting pro-
jection error (with high probability).

4.5.4.1 Linear Special Case

We shall now demonstrate this approach on a simple example constraint for which
the system (4.58) can be solved easily and explicit projection error bounds can be
obtained. Consider the special case of a linear function f : Rn → R with random
coefficients:

f(x;ω) = ω>x+ τ.

Without loss of generality, let us assume τ = 0. This particular type of constraint
is closely related to integrated chance constraints, which are used, for instance, to
model bounds on expected losses of some kind; see, e.g., [156, 146]. For this choice
of f , our Monte Carlo estimates are

ĥk = ĥk(x) =
1

k

k∑
i=1

G(x;ωi) =
1

k

k∑
i=1

∇xf(x;ωi) =
1

k

k∑
i=1

ωi

4.5. Examples of Adaptive Approximate Projection Operators 187

and

ĝk(x) =
1

k

k∑
i=1

f(x;ωi) =
1

k

(
(ω1)>x+ · · ·+ (ωk)>x

)
=
(1

k

k∑
i=1

ωi
)>
x = ĥ>k x.

Moreover, assume that h, ĥk 6= 0; this corresponds to imposing a positive lower
bound on the subgradient norm. (Note that E[ĥk] = E[G(x;ω)] = h is possibly
unknown7.)
Observing that ĥk is in fact independent of x (so that, in particular, it holds that

ĥk(z) = ĥk), (4.58) yields the optimal Lagrange multiplier µ∗ = (ĥ>k z − η)/‖ĥk‖22
and thus the solution

PkC(z) := y∗ = z −

(
ĥ>k z − η
‖ĥk‖22

)
ĥk

to the approximated projection problem8. The exact projection is given by

PC(z) = P∞C (z) := z − h>z − η
‖h‖22

h.

As the notation suggests, we do in fact have limk→∞ PkC(z) = P∞C (z) almost-surely,
since Prob(limk→∞ ĥk = h) = 1 by the (strong) law of large numbers.
Now, for sufficiently large k, we can give explicit confidence intervals for the

expected value h = E[ĥk] of the vector ĥk (whose distribution and variance may
also be unknown) via the central limit theorem: Given some α ∈ (0, 1), using the
corrected sample variances 1

k−1

∑k
i=1(ωij − (ĥk)j)

2 for each component j, and with
the (1− α

2)-quantile q(1−α/2) of the standard normal distribution N (0, 1), we have

Prob

h ∈
ĥk ± q(1−α/2)√

k
√
k − 1

√∑k

i=1(ωi1 − (ĥk)1)2

...√∑k
i=1(ωin − (ĥk)n)2

 = 1− α

(here, we abbreviate as [ĥk±(. . .)] the interval [ĥk−(. . .), ĥk+(. . .)]), or equivalently,

7Note that the feasibility operator construction suggested in [201], although in principle very
flexible, is in fact not applicable in this case.

8In fact, this approach produces a feasible point, although it needs not be the true projection of z
onto the feasible set: Since ĝk(x) = ĥ>k x, it holds that

g
(
PkC(z)

)
= E

[
ĝk(PkC(z))

]
= E

[
ĥ>k

(
z −

(
ĥ>k z−η
ĥ>k ĥk

)
ĥk

)]
= E[ĥ>k z − ĥ>k z + η] = E[η] = η.

188 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

writing

vk :=
q(1−α/2)√
k
√
k − 1

√√√√ k∑

i=1

(ωi1 − (ĥk)1)2, . . . ,

√√√√ k∑
i=1

(ωin − (ĥk)n)2

> ,
Prob

(
h = ĥk + c vk, c ∈ [−1, 1]

)
= 1 − α. Note that α ≤ 1 implies 1/2 ≤ 1 − α/2,

and thus q(1−α/2) ≥ 0; typical values for α are 0.1, 0.05 or 0.01.
Observe that, provided h = ĥk + c vk, some elementary computations yield

‖PkC(z)− P∞C (z)‖22 =

∥∥∥∥∥z − z +
ĥ>k z − η
‖ĥk‖22

ĥk −
(ĥk + c vk)>z − η
‖ĥk + c vk‖22

(ĥk + c vk)

∥∥∥∥∥
2

2

=

∥∥∥(ĥ>k z − η)(ĥk + c vk)− (ĥ>k z − η + c v>k z)ĥk

∥∥∥2

2

‖ĥk‖22 ‖ĥk + c vk‖22

=

∥∥∥c((ĥ>k z − η)vk − (v>k z)ĥk

)∥∥∥2

2

‖ĥk‖22 ‖ĥk + c vk‖22

=

(
‖(ĥ>k z − η)vk − (v>k z)ĥk‖22

‖ĥk‖22

)
︸ ︷︷ ︸

=:Dk

c2

‖ĥk + c vk‖22
.

Clearly, for a given (fixed) k, Dk is a nonnegative constant. Therefore,

Prob
(
‖PkC(z)− P∞C (z)‖22 ∈

[
min

c∈[−1,1]
ϕ(c), max

c∈[−1,1]
ϕ(c)

])
= 1− α,

where

ϕ(c) := Dk
c2

‖ĥk + cvk‖22
.

We have

ϕ′(c) :=
∂

∂c
ϕ(c) = Dk

2(ĥ>k vk)c2 + 2 ‖ĥk‖22 c
(‖vk‖22 c2 + 2(ĥ>k vk)c+ ‖ĥk‖22)2

and

ϕ′(c) = 0 for c ∈

{
0,−‖ĥk‖

2
2

ĥ>k vk

}
.

4.5. Examples of Adaptive Approximate Projection Operators 189

Moreover,

ϕ′′(c) :=
∂2

∂c2
ϕ(c) = −2Dk

2 ‖vk‖22 (ĥ>k vk) c3 + 3 ‖ĥk‖22 ‖vk‖22 c2 − ‖ĥk‖42
(‖vk‖22 c2 + 2(ĥ>k vk)c+ ‖ĥk‖22)3

and thus in particular, ϕ′′(0) = 2Dk/‖ĥk‖22, and

ϕ′′

(
−‖ĥk‖

2
2

ĥ>k vk

)
=

−2Dk (ĥ>k vk)4

‖ĥk‖22 (‖ĥk‖22 ‖vk‖22 − (ĥ>k vk)2)2
.

Since ϕ′′(0) ≥ 0, the (global) minimum of ϕ(c) is attained at c := 0 ∈ [−1, 1],
yielding ϕ(c) = 0, the natural lower bound for any norm. On the other hand, the
global maximum of ϕ(c) is attained at c̃ := −‖ĥk‖22/(ĥ>k vk), since ϕ′′(c̃) ≤ 0. Hence,
the maximum of ϕ(c) over the interval [−1, 1] is attained at

c := P[−1,1](c̃) =

−1, c̃ < −1,

1, c̃ > 1,

c̃, c̃ ∈ [−1, 1].

Note that we had implicitly assumed ĥ>k vk 6= 0, whence c̃ is well-defined, and
also that vk → 0 as k → ∞, since ĥk → h; consequently, for k sufficiently large,
c̃ /∈ [−1, 1] and c = −sign(ĥ>k vk).
Since the zero lower bound is trivial, we can omit it (as well as the squares) and

obtain
Prob

(
‖PkC(z)− P∞C (z)‖2 ≤ εk

)
= 1− α,

where

εk :=

∥∥∥∥∥ ĥ>k z − η‖ĥk‖22
ĥk −

ĥ>k z − η + c v>k z

‖ĥk + c vk‖22
(ĥk + c vk)

∥∥∥∥∥
2

with c = −sign(ĥ>k vk). Thus, for any given α ∈ (0, 1), and for k sufficiently large,
PkC(z) defines an adaptive approximate projection operator in the sense of (4.4),
with probability 1− α.

Remark 4.35. It is noteworthy that the projection accuracy directly depends on k,
and in the linear example above we could iteratively refine the estimate ĥk easily
by incorporating newly drawn independent samples.

190 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

4.6 Application in Compressed Sensing: ISAL1

Let us now describe a specialization of the ISA framework to the `1-minimization
problem

min ‖x‖1 s.t. Ax = b, (P1)

where A ∈ Rm×n with rank(A) = m < n and b ∈ Rm. Recall that if b = 0, the
(unique) optimal solution is trivially the all-zero vector.
As seen before, the subdifferential of the `1-norm at a point x is given by

∂‖x‖1 =

{
h ∈ [−1, 1]n : hi =

xi
|xi|

for all i ∈ {1, . . . , n} with xi 6= 0

}
.

Thus, in particular, 0 ∈ ∂‖x‖1 if and only if x = 0. In the algorithm, we may simply
use the signs of the iterates as subgradients, i.e.,

∂‖xk‖1 3 sign(xk) =

1, (xk)i > 0,

0, (xk)i = 0,

−1, (xk)i < 0.

(4.59)

A lower bound ϕ on the optimal objective value f∗ is easily available for prob-
lem (P1); e.g., we could use the trivial zero bound, or any dual lower bound (−b>y
for any y with ‖A>y‖∞ ≤ 1), see also Section 4.6.1 below.
Moreover, we can use a truncated CG procedure as the adaptive approximate

projection PεX (here, X = {x : Ax = b }) for our algorithm; the details were given
by Proposition 4.20 in Section 4.5.1.
We summarize the method in Algorithm 4.4, and obtain the following convergence

result.

Theorem 4.36 (ISAL1 convergence). Let X = {x : Ax = b } and PεX as defined
in Proposition 4.20, and let f∗ and X∗ be the optimal value and point set of prob-
lem (P1), respectively. Let ϕ ≤ f∗, 0 < λk ≤ β < 2 for all k, and

∑∞
k=0 λk = ∞.

For an arbitrary upper bound ϕ ≥ f∗, let

Lk :=
λk(2− β)(‖xk‖1 − ϕ)

‖hk‖22

(
ϕ− ‖xk‖1 +

β

2− β
(ϕ− ϕ)

)
,

and define, for any k,

dX∗(x
k) := 2 min

{
εk−1,

‖Axk − b‖2
σmin(A)

}
+
‖xk‖1 − ϕ√

n
.

4.6. Application in Compressed Sensing: ISAL1 191

Algorithm 4.4 ISAL1
Input: matrix A ∈ Rm×n, vector b ∈ Rm, estimate ϕ ∈ [0, f∗], starting point x0,

sequences (λk) and (εk), parameter γ ∈ (0, 1)
Output: an (approximate) solution to min{ ‖x‖1 : x ∈ X }
1: if b = 0 then
2: return optimal solution x∗ = 0
3: initialize k := 0, ` = −1, x−1 := x0, h−1 := 0, α−1 := 0, ε−1 := ε0

4: repeat
5: choose subgradient hk ∈ ∂‖xk‖1 (e.g., hk = sign(xk))
6: if ‖xk‖1 ≤ ϕ or xk = 0 then
7: if xk ∈ X then
8: stop (with xk optimal, ‖xk‖1 = ϕ = f∗)
9: increment ` := `+ 1

10: reset xk := PεX(xk−1 − αk−1h
k−1) for ε = γ`εk−1

11: go to Step 5
12: compute step size αk := λk(‖xk‖1 − ϕ)/‖hk‖22
13: compute next iterate xk+1 := PεkX (xk − αkhk)
14: reset ` := 0 and increment k := k + 1
15: until a stopping criterion is satisfied

Furthermore, let

εk := −
(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(x

k)

)
+

√(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(xk)

)2

− Lk.

(4.60)
Finally, let (νk) be a nonnegative sequence with

∑∞
k=0 νk <∞.

If (εk) satisfies 0 ≤ εk ≤ min{|εk|, νk} for all k, then the following holds.
(i) For any given δ > 0, there exists some index K such that

‖xK‖1 ≤ ϕ+ β
2−β (ϕ− ϕ) + δ.

(ii) If additionally λk → 0, then all accumulation points of the sequence of objective
function values (‖xk‖1) of the ISAL1 iterates (xk) are contained in the closed
interval [f∗, ϕ]. In particular, if ϕ = f∗ then the whole sequence (‖xk‖1)

converges to the optimal value f∗, whereas on the other hand, if additionally
‖xk‖1 > ϕ for all k, then ‖xk‖1 → ϕ as k →∞.

Proof. We start by considering the special case ϕ = f∗. Recall that Theorem 4.7
(applied to (P1)) yields statements (i) and (ii) for this case, under the conditions
that X∗ is bounded, the subgradients hk satisfy 0 < H ≤ ‖hk‖2 ≤ H <∞, and (εk)

192 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

obeys 0 ≤ εk ≤ min{|ε̃k|, νk} for all k, where

ε̃k := −
(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(x

k)

)
+

√(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(xk)

)2

− Lk

(4.61)
with

Lk :=
λk(2− β)(‖xk‖1 − ϕ)

‖hk‖22

(
f∗ − ‖xk‖1 +

β

2− β
(f∗ − ϕ)

)
.

The conditions on the subgradients are clearly satisfied in ISAL1: Since xk 6= 0 for
all k (possibly after sufficient projection accuracy refinement) and by (4.59), we have
1 ≤ ‖hk‖2 ≤

√
n for all k. Also, since for problem (P1), X∗ ⊆ {x : ‖x‖1 = f∗ },

the boundedness of X∗ is easy to see. Thus, it remains to show that the conditions
on the projection accuracies are satisfied as well.
To that end, the main point is to replace the (exact) distance of x to X∗ by a

computable estimate based on the weak sharp minima property of ‖x‖1 over X.
Indeed, note that the `1-norm can be written as a polyhedral function:

‖x‖1 = sign(x)>x = max{ s>x : si ∈ {±1} for all 1 ≤ i ≤ n }.

Then, with µ = min{ ‖s‖2 : si ∈ {±1} for all i } =
√
n, it follows from results

in [105] (see also Section 4.4.2) that

‖x‖1 − f∗ ≥
√
n dX∗(x) for all x ∈ X = {x : Ax = b } ⊂ Rn. (4.62)

Moreover, note that dX(xk) ≤ εk−1 for all k, by construction of the adaptive
approximate projection (we can assume without loss of generality that ε0 ≥ dX(x0);
otherwise, just consider iterations with k ≥ 1). Thus, with ϕ ≤ f∗, we can employ
the triangle inequality, (4.62), the norm relation ‖x‖1 ≤

√
n ‖x‖2 and the inequality

‖x− PX(x)‖2 ≤ ‖Ax− b‖2/σmin(A) (see the derivation of (4.37)) to obtain:

dX∗(x
k) ≤ dX(xk) + dX∗(PX(xk)) ≤ dX(xk) +

‖PX(xk)‖1 − f∗√
n

≤ min

{
εk−1,

‖Axk − b‖2
σmin(A)

}
+
‖PX(xk)− xk‖1 + ‖xk‖1 − ϕ√

n

≤ min

{
εk−1,

‖Axk − b‖2
σmin(A)

}
+

√
n√
n
dX(xk) +

‖xk‖1 − ϕ√
n

≤ 2 min

{
εk−1,

‖Axk − b‖2
σmin(A)

}
+
‖xk‖1 − ϕ√

n
= dX∗(x

k).

4.6. Application in Compressed Sensing: ISAL1 193

Recall that the bound ε̃k given in (4.61) was chosen such that, for εk ≤ ε̃k,

ε2
k + 2

(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(x

k)

)
εk + Lk ≤ 0,

see Lemma 4.15. Replacing dX∗(xk) by dX∗(x
k) here yields the more restrictive

upper bound

ε̃′k := −
(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(x

k)

)
+

√(
λk(‖xk‖1 − ϕ)

‖hk‖2
+ dX∗(xk)

)2

− Lk.

Thus, we can replace ε̃k by ε̃′k in Theorem 4.7 and maintain validity of the results
when applied to (P1). Moreover, since for ϕ = f∗, Lk = Lk and thus εk = ε̃′k, the
assertions of Theorem 4.7(ii) continue to hold true for ISAL1 in this special case,
for which the proof is thus complete.
From now on, consider an arbitrary upper bound ϕ ≥ f∗. We wish to additionally

replace the unknown value f∗ in Lk. Observe that ε̃′k ≥ 0 only if Lk ≤ 0. Thus,
using the upper bound

Lk ≤
λk(2− β)(‖xk‖1 − ϕ)

‖hk‖22

(
ϕ− ‖xk‖1 +

β

2− β
(ϕ− ϕ)

)
= Lk,

we can derive the computable bound εk given by (4.60); consequently, εk ≥ 0 if and
only if Lk ≤ 0.
Completely analogous to the proof of Theorem 4.7(i), it can be shown that part (i)

holds true (i.e., that for any δ > 0 there exists an index K such that fK = ‖xK‖1 ≤
ϕ+ β

2−β (ϕ− ϕ) + δ); we thus omit the details.

Regarding part (ii), the remaining special case ‖xk‖1 > ϕ for all k can be handled
similarly to the proof of Theorem 4.7(ii): Repeated application of part (i) yields a
subsequence (‖xKj‖1) which converges to ϕ as j → ∞. With the same techniques
employed previously, one can then show that no other accumulation point (larger
than ϕ) can exist, whence the whole sequence of objective function values indeed
converges to ϕ.
Finally, assume that ‖xk‖1 ≤ ϕ does occur eventually. Let (f−k) and (f+

k) denote
the subsequences of objective function values at most f∗ or at least ϕ, respectively.
By asymptotic feasibility, (f−k) clearly converges to f∗, if this subsequence is infinite.
Moreover, the above discussion of the case that ‖xk‖1 > ϕ holds for all k can
naturally be applied to (f+

k), which therefore converges to ϕ, if this inequality holds
infinitely often.
Obviously, all possibly remaining accumulation points of (‖xk‖1) must lie within

194 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

[f∗, ϕ]. (Indeed, if f∗ ≤ ‖xk‖1 ≤ ϕ occurs infinitely often, the associated subse-
quence is bounded, and hence at least one such accumulation point must exist.)

We give the following remarks on Theorem 4.36.

Remark 4.37.
1. The main difference to the general convergence Theorem 4.7 is that The-

orem 4.36 allows for replacing the (predetermined) input sequence (εk) by
bounds that guarantee convergence and can be (automatically) computed in
each iteration. Note also that Theorem 4.7 assumes ϕ < f∗. However, it is
easy to see that the corresponding proof goes through for ϕ = f∗ as well (see
also Theorem 4.5).

2. For the case ϕ = f∗, convergence of the sequence of iterates (xk) to an optimal
point can be established by further assumptions on the relaxation parame-
ters (λk), cf. Theorem 4.7(iii). The same holds (without additional assump-
tions) whenever the optimal solution is unique. This is particularly noteworthy
in the applications of `1-minimization in Compressed Sensing, where solution
uniqueness is a typical occurrence.

3. Clearly, more flexibility regarding the projection accuracy (i.e., larger
bounds εk) can be obtained via larger lower bounds ϕ and smaller upper
bounds ϕ, which improve dX∗(xk) and Lk, respectively. For instance, one
could make use of the Lipschitz-continuity of the `1-norm (with Lipschitz-
constant 1), i.e.,

| ‖x‖1 − ‖y‖1 | ≤ ‖x− y‖2 for all x, y ∈ Rn.

Since the adaptive approximate projection ensures dX(xk) ≤ εk−1, it holds
that f∗ ≤ ‖xk‖1 + εk−1 for all k; see also the variable target value schemes
discussed in Section 4.4.3.

4. Finally, it should be mentioned that convergence of the objective function
values to one specific value cannot be guaranteed as before, due to replac-
ing Lk by Lk: The condition for Lk to be nonpositive (so that nonnegative
bounds εk can be employed) is sufficient to have Lk ≤ 0, but clearly not nec-
essary. However, one then cannot proceed as in the proof of Theorem 4.7 to
obtain convergence to f∗ for both subsequences below or above this value,
unless ϕ = f∗ (i.e., Lk = Lk). For ϕ > f∗, monotonicity of the distance
to X∗ is not controllable (using εk) if ‖xk‖1 < ϕ + β

2−β (ϕ − ϕ), i.e., Lk > 0.
Then, the contradictions regarding accumulation points other than the desired
value cannot be reproduced along the same lines as before (see the proofs of
Theorems 4.5(ii) and 4.7(ii)), since the monotonic decrease of (dX∗(x

k)) is not

4.6. Application in Compressed Sensing: ISAL1 195

known to hold for all k.
While we are not aware of an immediate remedy to this issue, several ap-
proaches suggest themselves to achieve convergence to the optimal value even-
tually. For instance, one could resort to exact projections as soon as Lk > 0,
although (given our original motivation) this is clearly undesirable. Variable
target value approaches (see Section 4.4.3) could be combined with employing
computable bounds as used above, in particular regarding upper bounds of f∗

to improve Lk. Similarly, a reset mechanism could be included in which ISAL1
is restarted with improved Lk, perhaps several times over (ideally achiev-
ing ϕ→ f∗).

In fact, ISAL1 can handle BP Denoising problems as well—the following result
covers (Pδ1) and variants with other `p-norms in the constraints:

Theorem 4.38 (ISAL1 convergence for `p-norm denoising constraints). Let p ≥ 1

and let f∗ and X∗δ be the optimal value and point set of

min ‖x‖1 s.t. ‖Ax− b‖p ≤ δ, (Pδ1, p)

respectively, and suppose we apply ISAL1 to this problem, i.e., in Algorithm 4.4 we
let X = Xp

δ := {x : ‖Ax− b‖p ≤ δ } and let PεX be one of the adaptive approximate
projection operators for Xp

δ given in Section 4.5.3. Then, under the same assump-
tions, the convergence results of Theorem 4.36 hold with respect to (Pδ1, p) as well.
Moreover, the condition b = 0 in Step 1 can be replaced by ‖b‖p ≤ δ.

Proof. Clearly, for (Pδ1, p), if ‖b‖p ≤ δ, then x∗ = 0, which justifies relaxing the
condition b = 0 in Step 1. Moreover, the same statements regarding boundedness
of the subgradients, achieving xk 6= 0 for all k (possibly via projection accuracy
refinements), and boundedness of the optimal set X∗δ hold true for ISAL1 with PεX
replaced by Pε

Xpδ ,(F)ISTA
as given in Propositions 4.30, 4.32 or 4.34, respectively.

Thus, we can proceed completely analogously to the proof of Theorem 4.36.
In fact, the only point requiring reinspection is the bound dX∗(x) (here,

X∗ ≡ X∗δ): Since for any p ≥ 1 (and δ ≥ 0), X0 := {x : Ax = b } ⊆ Xp
δ , we

have dXpδ (x) ≤ dX0(x). Therefore, with X∗δ = arg min{ ‖x‖1 : ‖Ax− b‖p ≤ δ } and
for any k,

dX∗δ (xk) ≤ dXpδ (xk) + dX∗δ (PXδ(xk)) ≤ dX0
(xk) +

‖PXδ(xk)‖1 − f∗√
n

≤ dX0(xk) +
‖PXδ(xk)− xk‖1√

n
+
‖xk‖1 − ϕ√

n

196 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

≤ dX0
(xk) + dXδ(x

k) +
‖xk‖1 − ϕ√

n
≤ 2 dX0

(xk) +
‖xk‖1 − ϕ√

n
.

Thus, dX∗(x) as given in Theorem 4.36 is a valid upper bound w.r.t. (Pδ1, p) (or X∗δ ,
respectively) as well.

The practicality of the proposed adaptive approximate projection operators in-
volving (F)ISTA depends on p; at least for p ∈ {1, 2,∞}, a low iteration complexity
of the iterative projection schemes can be achieved, see the comment at the end of
Section 4.5.3.

4.6.1 Implementation Details

In the following, we give a detailed description of the ISAL1 implementation for (P1)
that was included in our extensive `1-solver comparison (see Chapter 3, and [174]).
We use several ideas to improve practical performance, regardless of the theoretical

convergence conditions.
The theoretical convergence result in Theorem 4.36 (see also Theorem 4.7) hinges

on dynamic bounds on the projection accuracies (εk) and thus on the number of CG
steps needed to guarantee these accuracies, cf. Proposition 4.20. Surprisingly, this
does not seem to be essential in practice. We observed that limiting the number
of CG steps to a small constant suffices to achieve practical convergence. The
actual number seems to depend on the density of A—the sparser the matrix, the
more CG steps are apparently necessary; for dense matrices often two or three steps
suffice. As a default, we use at most five CG iterations to approximate the projection
in our implementation. Hence, the sequence (εk) or the associated computable
(upper) bounds do not appear explicitly anywhere in our implementation. Moreover,
the case fk ≤ ϕ never occurred in any of our numerical experiments (even with
ϕ > 0, where occurrence is theoretically be possible). Therefore, our implementation
presently does not contain a projection accuracy refinement phase (Steps 6–11 of
Algorithm 4.4).
A well-known practical property of subgradient methods is the so-called “zig-

zagging” of the iteration points, which is also a main cause for the slow local con-
vergence often exhibited by such algorithms. To alleviate this effect, we apply the
following stabilization scheme, suggested in [172]: Replace the subgradient hk by
the convex combination

h̃k := 0.6hk + 0.2hk−1 + 0.1(hk−2 + hk−3).

4.6. Application in Compressed Sensing: ISAL1 197

Note that, as a consequence, h̃k ∈ ∂‖xk‖1 does not generally hold. Other stabiliza-
tion techniques have been proposed, e.g., in [46, 75, 170, 166].
Furthermore, as suggested in [129], instead of using a predetermined step size

parameter sequence (λk) we reduce λk by a factor of 1
2 after a number p of consec-

utive iterations without “relevant” improvement in the objective (i.e., a reduction
of the previous best value by at least 10−6), or after p iterations (independently of
the improvement). Choosing improvement (as opposed to change) in the objective
turned out to work well in practice. We start with an initial value of λ0 = 0.85.
Moreover, we performed a large number of experiments to estimate good rules for
choosing p and p; it turns out that they depend on the density of the (m×n) matrix
A, which is given by

ρ(A) :=
‖A‖0
mn

=
|{ {i, j} : aij 6= 0 }|

mn
.

Specifically, we use

p :=

⌈
max

{
5, n

mρ(A)3/4

}⌉
, if ρ(A) ≤ 0.1,⌈

max
{

5, n
mρ(A)2

}⌉
, otherwise,

and, with sp := max{500, 5p},

p := max

{⌈
sp√

2

⌋
,

⌈
sp

(1 + ρ(A))2

⌋}
, (4.63)

where drc denotes the integer closest to a number r (rounded up or down, respec-
tively).
Another well-known drawback of subgradient methods is the typical need for ex-

tensive parameter tuning to achieve practicality; ISA is no exception to this “rule”.
Indeed, despite having implemented various countermeasures and benchmarking the
main algorithmic parameters, the above values can sometimes fail to yield conver-
gence of our ISAL1 code. However, in such cases, this is often due to overly aggres-
sive default parameter settings (which work well generally, but not always). There-
fore, we apply a restart mechanism that resets some parameters to more conservative
values9 in case the step sizes become too small (close to numerical precision), or if
the iterates fail to converge for the default parameter choices. The latter is assumed
to be the case if a stagnation of the algorithmic process is detected for the first time.
By stagnation, we mean that either the relevant objective improvement stalls over a

9Specifically, we reset λk := λ0 and p := 5p, then recompute sp := max{10 000, 10p} and finally p
via (4.63). (The current iterate xk is the new “starting” point.)

198 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

span of sp iterations, or the approximate support S = { i : |xki | > max{10−6, εS} }
does not change over 10 successive updates, which are performed every bm/100c
iterations. Here, εS is chosen such that the entries xkj with |xkj | ≥ εS account for at
least 99.99% of ‖xk‖1.
We terminate the method if either stagnation or too-small step sizes occur again

after such a restart.
The dynamic step sizes use an estimate ϕ of the optimal value f∗ of (P1). This

estimate is obtained as a dual lower bound. More precisely, given the starting
point x0 with (approximate) support S0, we compute an approximate solution w0

to A>S0w = − sign(x0). The scaled vector w0/‖A>w0‖∞ is clearly a feasible solution
to the dual problem of (P1) (cf. Lemma 1.5),

max −b>w s.t. − 1 ≤ A>w ≤ 1,

and thus implies the dual lower bound −b>w0/‖A>w0‖∞ =: ϕ ≤ f∗, which we
use in our implementation. Note that other lower bounds are also easily available,
e.g., 0 is always valid, and b>b/‖A>b‖∞ always yields a positive bound (since b 6= 0).
However, we found the duality-based approach described above often gives a better
bound and worked well in our experiments. (In fact, we automatically obtain such a
dual bound from HOC—described in detail in Section 3.1—which serves as another
stopping criterion in our ISAL1 implementation.)
Moreover, in the CG-based projection scheme given by Proposition 4.20, we usu-

ally compute products of the form z = AA>q separately as v = A>q, z = Av,
instead of directly computing AA>. For sparse A, this allows for faster evaluation
of matrix-vector products (since AA> may be dense), while for large dense matrices,
computing AA> explicitly can yield memory problems, so that in either case the
separate computation is preferable. Nevertheless, for small dense matrices, AA>

is precomputed and used directly. (The computational results in [175, Section 5.2]
show that, in this case, it still makes sense to approximate the projection instead of
computing it exactly.)
Experiments showed that x0 := A>b generally seems to be a good starting point.

If AA> = I, x0 is feasible, since then Ax0 = AA>b = b. This property of A allows
for fast (exact) projections ontoX and is (approximately) fulfilled by several types of
matrices common in Compressed Sensing; see also the test set used for our `1-solver
comparison, Section 3.3.
Two other aspects greatly improve the performance of ISAL1: Scaling the right

hand side to unit Euclidean length, i.e., working with b/‖b‖2 instead of b, helps
in terms of numerical stability and convergence speed—for instance, such a scaling
results in ISAL1 achieving more accurate solutions in less time for about 95% of the
test instances with high dynamic range solutions (the geometric mean running time

4.6. Application in Compressed Sensing: ISAL1 199

reduced by about 81%, the average accuracy improved by 5 orders of magnitude).
Intuitively, these improvements can be explained by the relative size of the compo-
nents in a subgradient with respect to the scaled iterate vector: If ‖b‖2 is large, then
a subgradient h at some point x is also a subgradient at x/‖b‖2, and its entries are
larger relative to the scaled point than to x itself, thus allowing for quicker progress
toward the optimum. Similarly, if ‖b‖2 is very small, then scaling eventually re-
sults in reducing this relative size of a subgradient step (component-wise), thereby
possibly avoiding unproductively large steps.
Finally, as a postprocessing step after termination, we try to improve the solution

by solving (in a least-squares sense) the system ASxS = b restricted to columns
indexed by S, similarly to the “debiasing” step described in [256, Section II.I]. If the
obtained point is feasible and yields a better objective function value than the best
iterate, it is returned instead. (Here, S is the last support approximation obtained
during the course of the algorithm.)

4.6.1.1 Recent Modifications and Additions to the ISAL1 Package

The above-described details pertain to ISAL1 version 0.91, which is the one used in
the numerical experiments in the BP solver comparison in Chapter 3 (and in [174]).
In the course of writing this thesis, we made a few minor, mostly cosmetic changes
to the code. However, all of the above implementation details continue to hold.
One modification worth mentioning is the following: Recall that theoretically,

ISAL1 will reach feasibility with respect to any fixed tolerance after finitely many
iterations. As a practical safeguard, we implemented an additional high-accuracy
projection (after regular termination) if the computed solution x does not already
obey ‖Ax− b‖∞ ≤ 10−6.
More importantly, the ISAL1 package now also contains a prototypical implemen-

tation of the BP Denoising variant, i.e., ISA applied to (Pδ1). Here, we realize the
approximate projections onto {x : ‖Ax− b‖2 ≤ δ } by means of the FISTA code
from the UNLocBoX-Package previously mentioned in Section 4.5.3, Remark 4.33.
(We used max{λk, 10−5} as the feasibility tolerance of the projection algorithm,
and start with a maximum allowed iteration number of 20 which is increased by 5
each time λk is halved until it reaches 100.) This ISAL1 variant also includes HOC
for (Pδ1), cf. Section 3.6.
However, as pointed out earlier, the many algorithmic parameters of the

Denoising-ISAL1 code have not yet been tuned, and the experiments from Sec-
tion 3.6.3 indicate that the current default values (from the original ISAL1 variant
solving (P1)) do not seem to be ideal choices w.r.t. (Pδ1). Thus, the Denoising-ISAL1
implementation still has a somewhat “experimental”, or prototypical, status.

200 Chapter 4. ISA Framework for Nonsmooth Convex Optimization

The new version 1.0 of the ISAL1 package is available from the same webpage
(http://wwwopt.mathematik.tu-darmstadt.de/spear) as version 0.91.

http://wwwopt.mathematik.tu-darmstadt.de/spear

CHAPTER 5
Concluding Remarks

The main topics of this thesis were the computational complexity of sparse recovery
conditions, a comparison of Basis Pursuit solvers as well as tools to improve their
performance, and a general subgradient method for nonsmooth convex optimization
(including a specialization to `1-minimization problems). Naturally, for each of these
subject matters there remain open questions, further extensions or related problems
to explore. In the following, we will give some pointers to possible future research
along these lines.

5.1 Intractability of Recovery Conditions: Subtleties
and Open Problems

Among other things, the results of Chapter 2 show that it is coNP-complete to
answer the following questions in the case γ = 1:

Given a matrix A and order k, does the RIP or NSP hold with some constant < γ?

It is important to note that our results do not imply NP-hardness for every fixed
constant γ < 1. For instance, Theorem 2.21 asserts that it is (co)NP-hard to certify
the RIP for given A, k and δk ∈ (0, 1) in general ; see also Corollary 2.22. The
actual δk appearing in the proof, however, is very close to 1 and thus far from
values of γ that yield actual sparse recovery guarantees. Similarly, while the NSP
guarantees `0-`1-equivalence for αk < 1/2, we proved NP-hardness for deciding
whether αk < 1. The complexity of these related questions therefore remains open.

201

202 Chapter 5. Concluding Remarks

(Note, however, that all such decision problems become solvable in time O(npoly(k))

if k is fixed, regardless of the γ value.)
Nevertheless, our results do imply that computing the RIP and NSP constants δk

and αk, respectively, is NP-hard in general. This provides a justification for investi-
gating general approximation algorithms (that compute bounds on δk or αk) instead
of searching for polynomial-time exact algorithms.
Indeed, to the best of our knowledge, the focus has so far been laid largely on

relaxations or heuristics, see [77, 78, 145, 167] and other works. However, (co)NP-
hardness does not necessarily exclude the possibility of practically efficient exact
algorithms. In [158, 159], it was shown that one may sometimes do better than
exhaustive search to certify the RIP, making use of the nondecreasing monotonicity
of δk with growing k. An exact procedure to compute the NSC αk was very recently
proposed in [61] and empirically demonstrated to be faster than brute force. Unfor-
tunately, neither method can guarantee a running time improvement with respect
to simple enumeration. Moreover, the strong NP-hardness of computing the RIC δk
(cf. Corollary 2.32) shows that no general pseudo-polynomial-time algorithm (i.e., a
method with running time polynomially bounded by the input size and the largest
occurring numerical value) can exist for this task, unless P=NP [115]. On the other
hand, the NSC αk is only shown to be weakly NP-hard to compute (based on the
corresponding result about the spark of a matrix), so it might still be computable by
(say) dynamic programming. More work on exact algorithms could certainly shed
more light on the behavior of the spark, RIP and NSP.
Another interesting question is whether it is hard to approximate the constants as-

sociated with the RIP or NSP in polynomial time to within some factor. A first step
in this direction was taken in [158, 159], where inapproximability of RIP parameters
is shown under certain less common complexity assumptions (about dense subgraphs
and the so-called “Hidden Clique problem”, respectively), see also [22]. Moreover,
our above-mentioned strong NP-hardness result implies that, given any ε > 0, we
cannot approximate δk to within a factor of 1 + ε in time O(poly(A, k, 1/ε)) (i.e., no
FPTAS can exist) unless P=NP. Similarly, it would be good to know whether spark
and NSC computations are actually strongly NP-hard as well, or if one of these
problems admits an FPTAS (or, as mentioned above, a pseudo-polynomial-time
algorithm), as weakly NP-hard problems often do. (Regarding the sparse recon-
struction problem (P0) itself, strong inapproximability results appear in [7].)

5.2. Test Sets, Solver Comparisons and HOC 203

5.2 Test Sets, Solver Comparisons and HOC

With our test set and numerical experiments (see Chapter 3), we hope to have
made a further step towards comprehensive, fair and meaningful comparisons of
Basis Pursuit solvers. As is typical for basically any such computational tests, there
are many aspects to consider, and there are often good arguments for both sides of
opposing strategies. For instance, instead of the approach we chose—to assess the
solvers in a black-box fashion and interpret the results under explicit consideration
of different accuracy settings—one could have changed all codes to apply identical
criteria, which would arguably yield the most directly comparable results. On the
other hand, those findings could be misleading regarding the behavior of the original,
unmodified solver implementation: Naturally, a convergent algorithm will eventually
produce solutions that meet high accuracy demands, but oftentimes, convergence
becomes considerably slower in the vicinity of the optimum. Thus, most solvers
are tuned to balance the resulting trade-off between speed and accuracy, and may
not be designed or intended for obtaining (numerically) exact solutions even if the
underlying theory allows for it. This should arguably be taken into account—which
eventually leads back to our black-box viewpoint.
Moreover, we saw that the heuristic optimality check we proposed for Basis Pur-

suit, i.e., HOC (Algorithm 3.2), often succeeds in identifying the exact optimum
(within machine precision) and leads to early termination even before a solver’s
(medium-level) default target accuracy is reached. (Of course, the speed-ups—or
overheads—would be even more pronounced if the solver was run with parameter
settings aiming at high solution accuracy.) Importantly, HOC is independent of
the inner workings of a given solver and can easily be integrated as an additional
stopping criterion, and in case HOC is not successful, the induced runtime overhead
is usually rather small.
With respect to both solver comparisons and further studies of the impact of

HOC on solution speed and accuracy, many more numerical experiments can be
made (regardless of which of the two above-described evaluation approaches is be-
ing pursued): Perhaps most importantly, our computational results would be well-
complemented by a comparison on (very) large-scale instances, as these better reflect
real-world problem dimensions. It would be interesting to see if the conclusions we
reached from our tests continue to hold in such settings. In particular, the LP
solvers Cplex and SoPlex (which turned out to be among the fastest and most
reliable solution methods on our test set) will no longer be applicable once we deal
with fast operators instead of explicit matrices. Note also that some solvers (e.g.,
YALL1 and NESTA) are designed or tuned for the case AA> = I, which should be
taken into account for test set extensions and further comparisons.

204 Chapter 5. Concluding Remarks

Moreover, `1-Homotopy became arguably the best high-accuracy solver for (P1)
once we deviated from the theoretical requirements and actually applied it to the
`1-regularized least-squares problem (QPλ) with a very small regularization param-
eter λ. This naturally raises the question how the many more solvers that exist
for (QPλ) (e.g., SpaRSA [256], GPSR [107], or FISTA [18]) compare to the solvers
for the pure BP problem (P1) considered in Chapter 3 if run with similarly tiny λ
values. (The idea to obtain high-accuracy approximately optimal solutions to (P1)
by solving (QPλ) with small regularization parameter is, of course, not new, see for
example [256].)

Remark 5.1. Note that most of the BP solvers considered in Chapter 3 are actively
maintained; in particular, newer versions than the ones we used in our experiments
are available for SPGL1 (now at version 1.8), YALL1 (1.4), `1-Homotopy (2.0),
SoPlex (1.7.1) and Cplex (12.5.1.0). Moreover, just recently, Matlab version
R2013b (8.2) has been released, and our own code ISAL1 is now at version 1.0
(though the changes to the BP code were minimal). However, presumably the “big
picture” and conclusions will essentially remain the same, as most changes (compared
to the versions we worked with) were minor bug-fixes or solver-package extensions
to further problem variants not considered in this thesis.

The consideration of large-scale instances would clearly also be essential for a
meaningful comparison of solvers for the denoising problems (Pδ1) and (QPλ): While
the experiments in Section 3.6 indicate that the HOC variants adapted to these
problems (i.e., Algorithms 3.3 and 3.4, respectively) are potentially beneficial, the
solvers for which the influence was truly notable (`1-Magic and ISAL1 for (Pδ1) and
SolveBP/PDCO for (QPλ)) were not competitive with the other solvers used in these
tests (SPGL1 and `1-Homotopy). On the relatively small test instances from these
experiments (the largest matrix was 1024×8192), the latter solvers were so fast that
HOC hardly had a chance to improve anything. In particular, this can be understood
literally for `1-Homotopy, which terminated after as many iterations as there are
nonzeros in the optimum (i.e., with strictly increasing supports throughout the
algorithmic process) on about 75% of the test instances considered there. Thus, to
assess the potential of HOC more thoroughly, a rigorous solver comparison for (Pδ1)
or (QPλ) along the lines of the one for (P1) presented in Chapter 3 should focus
on large-scale experiments. (Again, this also makes sense given that real-world
instances usually are indeed large-scale.) In particular, Remark 3.5 is applicable for
the denoising variants of HOC as well, i.e., the HOC schemes can be implemented to
work with fast operators / implicit matrices (without the need for extracting columns
explicitly) as are frequently encountered in the large-scale regime.
Moreover, in practical applications, precise values for δ or λ in (Pδ1) and (QPλ),

5.2. Test Sets, Solver Comparisons and HOC 205

respectively, are usually not available. Therefore, it is worth investigating how
the HOC variants behave in (or could be optimized for) situations with estimated
parameter values. Given how HOC sometimes significantly improved the accuracy
but not without introducing a slight overhead (see, for example, Figure 3.14), it
may also be of interest to try HOC as a postprocessing routine and compare it with,
e.g., the debiasing procedure from [256].
Concerning HOC for (P1) (Algorithm 3.2), the construction of the dual certifi-

cate ŵ may deserve further attention: The (least-squares) approach used in our
HOC implementation is very specific and only guaranteed to work well if the BP
solution is sufficiently sparse, see Section 3.1.3. Are there other sensible ways to
quickly construct a dual solution to use within HOC for BP? One possible approach
could be combining (P1)-specifics with ideas from LP cross-over methods—note that
essentially, HOC is a cross-over routine itself, although it attempts to construct a
primal-dual optimal pair directly, and not via determining a nearby optimal basis
(for an LP reformulation of (P1)).

Remark 5.2. Within the research project SPEAR (which the author of this thesis
participated in from 2011 to 2013), Christoph Brauer, presently a student at TU
Braunschweig, has developed HOC for the `∞-constraint variant of Basis Pursuit
Denoising, i.e.,

min ‖x‖1 s.t. ‖Ax− b‖∞ ≤ δ.

Additionally, C. Brauer and Dirk Lorenz extended ISAL1 and HOC to the “`1-
analysis” problem

min ‖Bx‖1 s.t. Ax = b.

It will be interesting to see how these versions perform, or compare to other methods.

Finally, regarding test sets that admit objective comparisons, our approach was to
construct instances with known (unique) optimal solutions. However, we reached the
limits of the construction methods from L1TestPack (cf. [173]) for the larger matrices
from our test set, and while our ERC-based procedure still worked, those instances
are arguably easier in general (at least with respect to HOC). Thus, extending
the applicability of (say) the alternating projections method from L1TestPack to
higher dimensions remains a challenge. An interesting alternative to construct BP-
recoverable solutions (of arbitrary support sizes up to the row number of the given
matrix itself) was recently proposed in [162].
Moreover, with respect to unification and comparability of numerical solver eval-

uations for `1-minimization problems, one can envision setting up a large database
of benchmark test problems comprising both synthetic and real-world data. Besides
our own test set, several attempts in this direction have already been made over the

206 Chapter 5. Concluding Remarks

years, e.g., the Spot toolbox (see http://www.cs.ubc.ca/labs/scl/spot), which
provides various matrix and fast operator constructions. So far, it seems that such
collections are not very widely used. However, in view of the often-advocated “spirit
of reproducible research” (cf. http://reproducibleresearch.net), a single large
test problem collection arguably appears to be a logical next step.

5.3 Further Extensions and Applications of ISA

Several aspects regarding ISA remain subject to future research as well. For in-
stance, one could investigate whether our framework can be extended to (infinite-
dimensional) Hilbert space settings, or combined with incremental subgradient
schemes, bundle methods (see, e.g., [134, 152]), or Nesterov’s algorithm [199]. (In
particular, one could explore the behavior of other algorithms that rely on projec-
tions if these methods are instead equipped with adaptive approximate projections
as are used in our framework.) It is also of interest to consider how the ISA frame-
work could be adapted to error-admitting settings such as those in [263, 194], i.e.,
incorporating random or deterministic (nonvanishing) noise and erroneous function
or subgradient evaluations. Some of the fairly recent results in [194], which all re-
quire feasible iterates, seem conceptually close to our convergence analyses, so a
blend of the two approaches might be promising.
Furthermore, it would also be interesting to investigate the convergence behavior

of ISA-like subgradient schemes that employ other general, numerically motivated
notions of “adaptive approximate projections”, e.g., solving the projection problem
with an approximation algorithm with additive or multiplicative performance guar-
antee.
From a practical viewpoint, the main question naturally is how the ISA variants

compare with other solvers in terms of solution accuracy and runtime.
For the BP problem (P1), the solver comparison in Section 3.4 demonstrated that

ISAL1 is competitive on many test problems. Unfortunately, a typical drawback of
basic subgradient schemes also pertains to ISAL1: Several algorithmic parameters
needed to be benchmarked in extensive tests to achieve practicability of the method.
As mentioned earlier, the parameter values that were found to work well for ISAL1
applied to (P1) will most likely not be the best choices with respect to the denoising
problem (Pδ1). The experiments in Section 3.6 show that, in principle, ISAL1 works
for (Pδ1) as well, but the respective current implementation should be regarded as
a prototype because the parameters have not yet been benchmarked specifically
for this problem. Once a suitable test set for BP Denoising is available (cf. the

http://www.cs.ubc.ca/labs/scl/spot
http://reproducibleresearch.net

5.4. Sparse Recovery via Branch & Cut 207

discussion in the previous subsection), such a parameter benchmarking is certainly
a priority task with respect to improving the ISAL1 code for (Pδ1).
Additionally, the practical application of ISAL1 to other denoising variants with

constraints of the form ‖Ax− b‖p ≤ δ for 2 6= p ≥ 1—in particular, p ∈ {1,∞}—
is yet unexplored; the HOC procedure for `1-minimization under `∞-constraints
(mentioned in Remark 5.2) may become valuable for such ISAL1 implementation
extensions as well.
Beyond `1-minimization, specializations of the ISA framework to other problems

and applications would certainly be of interest.

5.4 Sparse Recovery via Branch & Cut

In the introductory chapter, we mentioned the work [143] on solving general in-
stances of the sparse representation problem

min ‖x‖0 s.t. Ax = b (P0)

exactly, and preliminary further experiments by the author of this thesis with a
different, but strongly related, approach. In order to address some challenges arising
in this context, let us first informally outline the two approaches (without going into
much detail).
In [143], a Branch & Cut method (cf., e.g., [224]) is applied to a binary integer

programming (IP) formulation, exploiting the fact that (P0) can be viewed (see [7])
as a special case of theMaximum Feasible Subsystem problem (MaxFS), which reads:
Given an infeasible system Σ := {Mξ ≤ f}, what is the largest possible number of
satisfiable inequalities? Each binary variable in the resulting IP corresponds to one
inequality of Σ and models whether it is satisfied or violated (given some ξ).
At first sight, a potential drawback of this approach is that the number of variables

is doubled in the course of transforming the problem (see [143] for details). This
can be avoided by a different IP reformulation of (P0) in which the binary variables
are in direct correspondence with the indices of entries of x. The resulting problem
could be called Minimum Support-Complement Cover (MinSCC), since it is based
on the observation that all supports of (feasible) solutions to Ax = b need to contain
at least one index from the respective complements of all inclusion-wise maximal
infeasible supports. (The idea for this more direct approach, as well as a proof for
the central observation just mentioned, were relayed to the author of this thesis by
Marc Pfetsch, who coauthored [143] and developed the Branch & Cut code for the

208 Chapter 5. Concluding Remarks

MaxFS problem.)
Some experiments with a (prototypical) Branch & Cut code for MinSCC that we

implemented showed, somewhat surprisingly, that the MaxFS-based approach seems
superior despite the doubling of the variable number. Moreover, both algorithms
could only solve very small instances of (P0) within a reasonable time frame. Hence,
there remain a lot of open questions and unresolved issues regarding these exact
solution approaches; we sketch the most pressing aspects in the following.
Branch & Cut methods rely crucially on the ability to generate problem-specific

cutting planes that cut off fractional solutions of intermediate LP relaxations of
the integer program. Currently, for both of the above-mentioned IPs, only basic
valid inequalities are known that come either directly from the initial formulations
or from straightforward analysis of the zero-nonzero pattern of A and b. Thus, the
most important challenge with respect to improving the algorithms is the identifi-
cation of stronger cuts for the polytopes (integer hulls) underlying the respective
problem formulations, and the development of corresponding separation routines
that generate such cuts dynamically.
Regarding the relationship between the two IP models, a cursory analysis indi-

cated that the doubling of variables may actually be beneficial here—essentially, the
binary variables in the MaxFS-based variant actually correspond to indices in “split”
supports that directly incorporate the signs of the associated x-variables in (P0).
Consequently, fixing a binary variable to (say) 1 in the IP from [143] amounts to fix-
ing the sign of some entry in a solution x to Ax = b to ±1, and not only implies that
its value must be nonzero (as is inferred by fixing a variable to 1 in the MinSCC-IP).
A rigorous theoretical investigation of this aspect (e.g., from a polytope-theoretical
viewpoint) should provide insights on whether one can indeed say that the MaxFS
approach is somehow inherently better than the MinSCC formulation, as the existing
computational results seem to indicate.
Several other implementational aspects (e.g., domain propagation) are also still

largely unexplored and should be considered in the course of further development
of these Branch & Cut algorithms.

5.5 Other Related Sparsity Problems

Exact methods for (P0) could also be applied to compute the spark of a matrix,
see Section 2.3.2. Instead of solving a sequence of n `0-minimization problems as
suggested by the reduction sketched in that section, one could explore an alternative

5.5. Other Related Sparsity Problems 209

randomized approach: Note that, since the spark is invariant w.r.t. scaling,

spark(A) := min{ ‖x‖0 : Ax = 0, x 6= 0 } = min{ ‖x‖0 : Ax = 0, ‖x‖2 = 1 }.

Clearly, if we knew some spark-defining vector x∗, we could replace the (quadratic)
constraint ‖x‖2 = 1 by (x∗)>x = 1 and retain at least x∗ as an optimal solution
to the resulting problem, which therefore also yields the correct spark value. Since
generally no such x∗ is known, we could take a random vector ξ (with i.i.d. entries)
and consider

min{ ‖x‖0 : Ax = 0, ξ>x = 1 }.

Then, we may expect the solution value of this problem to equal spark(A), since
with high probability, the vector ξ will be linearly independent of the rows of A (i.e.,
ξ /∈ R(A>) = N (A)⊥) and also will not be orthogonal to every vector x ∈ N (A)

with minimal `0-norm.
Moreover, due to the optimality properties of greedy algorithms for matroid prob-

lems (see [205]), we can extend this idea to the problem of determining a sparse
nullspace basis (cf. Section 2.3.2 and the related references therein): After solving
the above problem, we could solve a sequence of problems, adding constraints in
each step that ensure we always obtain a new solution vector that is linearly inde-
pendent of the previously collected ones. If the true spark problem was correctly
solved by the randomized approach, this procedure constructs a basis matrix for the
nullspace with the fewest number of nonzeros possible.
As noted before, the Sparse Nullspace Basis problem is polynomially equiva-

lent to Matrix Sparsification (finding a regular matrix T such that B = TA is a
sparsest-possible matrix with R(A) = R(B) and R(A>) = R(B>)). Thus, similar
approaches can be concocted for this problem, which essentially amount to sequen-
tially finding sparse linear combinations of rows of A.
Naturally, instead of actually solving a series of (P0) problems exactly, we can

instead apply any of the heuristic methods known from Compressed Sensing, such as
OMP or BP. It would be interesting to see how heuristics devised along these lines
compare with the (surprisingly few) approaches proposed in the literature (e.g., [68,
117, 186, 55]). Moreover, there has apparently been little to no progress regarding
matrix sparsification problems for a long time—the cited works are at least 20 years
old—although clearly, many areas dealing with numerical linear algebra might profit
greatly from new and improved developments. Arguably, the connections between
these matrix problems and sparse vector recovery (see also [123]) may be particularly
worth having a closer look at, given the advances the latter field has seen over the
past decade.

Bibliography

[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An Algorithm for Designing
Overcomplete Dictionaries for Sparse Representation,” IEEE Transactions on
Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[2] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “On the Projected Subgradient
Method for Nonsmooth Convex Optimization in a Hilbert Space,” Mathemat-
ical Programming, vol. 81, no. 1, pp. 23–35, 1998.

[3] B. Alexeev, J. Cahill, and D. G. Mixon, “Full Spark Frames,” Journal of
Fourier Analysis and Applications, vol. 18, no. 6, pp. 1167–1194, 2012.

[4] E. Allen, R. Helgason, J. Kennington, and B. Shetty, “A Generalization of
Polyak’s Convergence Result for Subgradient Optimization,” Mathematical
Programming, vol. 37, no. 3, pp. 309–317, 1987.

[5] E. Amaldi and V. Kann, “The Complexity and Approximability of Finding
Maximum Feasible Subsystems of Linear Relations,” Theoretical Computer
Science, vol. 147, no. 1–2, pp. 181–210, 1995.

[6] E. Amaldi and V. Kann, “On the Approximability of Some NP-hard Mini-
mization Problems for Linear Systems,” Cornell University, Ithaca, NY, USA,
Tech. Rep. TR96-015, 1996.

[7] E. Amaldi and V. Kann, “On the Approximability of Minimizing Nonzero
Variables or Unsatisfied Relations in Linear Systems,” Theoretical Computer
Science, vol. 209, no. 1–2, pp. 237–260, 1998.

[8] K. M. Anstreicher and L. A. Wolsey, “Two “Well-Known” Properties of Subgra-
dient Optimization,” Mathematical Programming, vol. 120, no. 1, pp. 213–220,
2009.

[9] M. S. Asif, “Primal Dual Pursuit—A Homotopy Based Algorithm for the
Dantzig Selector,” Master’s thesis, Georgia Institute of Technology, Atlanta,
GA, USA, 2008.

[10] M. S. Asif and J. Romberg, “On The LASSO and Dantzig Selector Equiva-
lence,” in Proceedings of the 44th Annual Conference on Information Sciences
and Systems (CISS). IEEE, 2010.

211

212 Bibliography

[11] A. Auslaender and M. Teboulle, “Projected Subgradient Methods With Non-
Euclidean Distances for Non-Differentiable Convex Minimization and Varia-
tional Inequalities,” Mathematical Programming, vol. 120, no. 1, pp. 27–48,
2009.

[12] B. Bah and J. Tanner, “Improved Bounds on Restricted Isometry Constants
for Gaussian Matrices,” SIAM Journal on Matrix Analysis and Applications,
vol. 31, no. 5, pp. 2882–2892, 2010.

[13] A. S. Bandeira, E. Dobriban, D. G. Mixon, and W. F. Sawin, “Certifying
the Restricted Isometry Property is Hard,” IEEE Transaction on Information
Theory, vol. 59, no. 6, pp. 3448–3450, 2013.

[14] R. G. Baraniuk, M. A. Davenport, R. A. DeVore, and M. B. Wakin, “A Simple
Proof of the Restricted Isometry Property for RandomMatrices,” Constructive
Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[15] R. H. Bartels, A. R. Conn, and J. W. Sinclair, “Minimization Techniques for
Piecewise Differentiable Functions: The `1 Solution to an Overdetermined
Linear System,” SIAM Journal of Numerical Analysis, vol. 15, no. 2, pp. 224–
241, 1978.

[16] H. H. Bauschke and J. M. Borwein, “On Projection Algorithms for Solving
Convex Feasibility Problems,” SIAM Review, vol. 38, no. 3, pp. 367–426, 1996.

[17] M. S. Bazaraa and H. D. Sherali, “On the Choice of Step Size in Subgradient
Optimization,” European Journal of Operations Research, vol. 7, no. 4, pp.
380–388, 1981.

[18] A. Beck and M. Teboulle, “A Fast Iterative Shrinkage-Thresholding Algorithm
for Linear Inverse Problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1,
pp. 183–202, 2009.

[19] S. Becker, J. Bobin, and E. J. Candès, “NESTA: A Fast and Accurate First-
Order Method for Sparse Recovery,” SIAM Journal on Imaging Sciences,
vol. 4, no. 1, pp. 1–39, 2011.

[20] E. R. Berlekamp, R. J. McEliece, and H. C. A. van Tilborg, “On the Inherent
Intractability of Certain Coding Problems,” IEEE Transactions on Informa-
tion Theory, vol. IT-24, no. 3, pp. 384–386, 1978.

[21] M. W. Berry, M. T. Heath, I. Kaneko, M. Lawo, R. J. Plemmons, and R. C.
Ward, “An Algorithm to Compute a Sparse Basis of the Null Space,” Nu-
merische Mathematik, vol. 47, no. 4, pp. 483–504, 1985.

[22] Q. Berthet and P. Rigollet, “Computational Lower Bounds for Sparse PCA,”
arXiv:1304.0828 [math.ST], 2013.

[23] Q. Berthet and P. Rigollet, “Optimal Detection of Sparse Principal Com-
ponents in High Dimensions,” The Annals of Statistics, vol. 41, no. 4, pp.
1780–1815, 2013.

Bibliography 213

[24] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA: Athena
Scientific, 1999.

[25] D. P. Bertsekas and S. K. Mitter, “A Descent Numerical Method for Opti-
mization Problems With Nondifferentiable Cost Functionals,” SIAM Journal
of Control, vol. 11, no. 4, pp. 637–652, 1973.

[26] D. Bertsimas and X. Luo, “On the Worst Case Complexity of Potential Re-
duction Algorithms for Linear Programming,” Mathematical Programming,
vol. 77, no. 2, pp. 321–333, 1997.

[27] J. M. Bioucas-Dias and M. A. T. Figueiredo, “A New TwIST: Two-Step Itera-
tive Shrinkage/Thresholding Algorithms for Image Restoration,” IEEE Trans-
actions on Image Processing, vol. 16, no. 12, pp. 2992–3004, 2007.

[28] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, ser.
Springer Series in Operations Research and Financial Engineering. New York,
NY, USA: Springer, 1999, corrected 2nd printing.

[29] E. G. Birgin, J. M. Martínez, and M. Raydan, “Nonmonotone Spectral Pro-
jected Gradient Methods on Convex Sets,” SIAM Journal on Optimization,
vol. 10, no. 4, pp. 1196–1211, 2000.

[30] R. E. Bixby and M. J. Saltzman, “Recovering an Optimal LP Basis from
an Interior Point Solution,” Operations Research Letters, vol. 15, no. 4, pp.
169–178, 1994.

[31] J. D. Blanchard, C. Cartis, and J. Tanner, “Compressed Sensing: How Sharp
is the RIP?” SIAM Review, vol. 53, no. 1, pp. 105–125, 2011.

[32] T. Blumensath and M. E. Davies, “Iterative Hard Thresholding for Com-
pressed Sensing,” Applied and Computational Harmonic Analysis, vol. 27,
no. 3, pp. 265–274, 2009.

[33] J. Bobin, J.-L. Starck, and R. Ottensamer, “Compressed Sensing in Astron-
omy,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 5, pp.
718–726, 2008.

[34] R. I. Boţ, S.-M. Grad, and G. Wanka, “Generalized Moreau-Rockafellar Re-
sults for Composed Convex Functions,” Optimization, vol. 58, no. 7, pp. 917–
933, 2009.

[35] J. A. Bondy and U. S. R. Murty, Graph Theory, ser. Graduate Texts in Math-
ematics, vol. 44, corrected 2nd printing. New York, NY, USA: Springer,
2008.

[36] J. Bourgain, S. J. Dilworth, K. Ford, S. V. Konyagin, and D. Kutzarova,
“Explicit Constructions of RIP Matrices and Related Problems,” Duke Math-
ematical Journal, vol. 159, no. 1, pp. 145–185, 2011.

[37] S. Boyd and A. Mutapcic, “Stochastic Subgradient Methods,” Lecture

214 Bibliography

notes, Stanford University, Stanford, CA, USA, 2008. Available online:
http://see.stanford.edu/materials/lsocoee364b/04-stoch_subgrad_notes.pdf

[38] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004.

[39] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, ser. Universitext. New
York, NY, USA: Springer, 2012.

[40] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From Sparse Solutions of Sys-
tems of Equations to Sparse Modeling of Signals and Images,” SIAM Review,
vol. 51, no. 1, pp. 34–81, 2009.

[41] R. S. Burachik, V. Jeyakumar, and Z. Wu, “Necessary and Sufficient Condi-
tions for Stable Conjugate Duality,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 64, no. 9, pp. 1998–2006, 2006.

[42] J.-F. Cai, S. Osher, and Z. Shen, “Linearized Bregman Iterations for Com-
pressed Sensing,” Mathematics of Computation, vol. 78, no. 267, pp. 1515–
1536, 2009.

[43] T. T. Cai and A. Zhang, “Compressed Sensing and Affine Rank Minimization
Under Restricted Isometry,” IEEE Transactions on Signal Processing, vol. 61,
no. 13, pp. 3279–3290, 2013.

[44] T. T. Cai and A. Zhang, “Sharp RIP Bound for Sparse Signal and Low-Rank
Matrix Recovery,” Applied and Computational Harmonic Analysis, vol. 35,
no. 1, pp. 74–93, 2013.

[45] T. T. Cai and A. Zhang, “Sparse Representation of a Polytope and Recovery of
Sparse Signals and Low-Rank Matrices,” IEEE Transactions on Information
Theory, vol. 60, no. 1, pp. 122–132, 2014.

[46] P. M. Camerini, L. Fratta, and F. Maffioli, “On Improving Relaxation Methods
by Modified Gradient Techniques,” Mathematical Programming Study, vol. 3,
pp. 26–34, 1975.

[47] E. J. Candès, “Compressive Sampling,” in Proceedings of the International
Congress of Mathematicians (ICM), vol. III. Zürich, Switzerland: European
Mathematical Society Publishing House, 2006, pp. 1433–1452.

[48] E. J. Candès, “The Restricted Isometry Property and Its Implications for
Compressed Sensing,” Comptes Rendus Mathématique, vol. 346, no. 9–10, pp.
589–592, 2008.

[49] E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles: Exact
Signal Reconstruction from Highly Incomplete Frequency Information,” IEEE
Transactions on Information Theory, vol. 52, no. 2, pp. 489–509, 2006.

[50] E. J. Candès and T. Tao, “Decoding by Linear Programming,” IEEE Trans-
actions on Information Theory, vol. 51, no. 12, pp. 4203–4215, 2005.

http://see.stanford.edu/materials/lsocoee364b/04-stoch_subgrad_notes.pdf

Bibliography 215

[51] E. J. Candès and T. Tao, “The Dantzig Selector: Statistical Estimation When
p Is Much Larger Than n,” The Annals of Statistics, vol. 35, no. 6, pp. 2313–
2351, 2007.

[52] E. J. Candès and M. B. Wakin, “An Introduction to Compressive Sampling,”
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[53] I. Carron. (2013, September) Nuit Blanche. Available online: http:
//nuit-blanche.blogspot.co.at

[54] S. F. Chang and S. T. McCormick, “A Hierarchical Algorithm for Making
Sparse Matrices Sparser,” Mathematical Programming, vol. 56, no. 1–3, pp.
1–30, 1992.

[55] S. F. Chang and S. T. McCormick, “Implementation and Computational Re-
sults for the Hierarchical Algorithm for Making Sparse Matrices Sparser,”
ACM Transactions on Mathematical Software, vol. 19, no. 3, pp. 419–441,
1993.

[56] A. Charnes and W. W. Cooper, “Chance-Constrained Programming,” Man-
agement Science, vol. 6, no. 1, pp. 73–79, 1959.

[57] G. H.-G. Chen and R. T. Rockafellar, “Convergence Rates in Forward-
Backward Splitting,” SIAM Journal on Optimization, vol. 7, no. 2, pp. 421–
444, 1997.

[58] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic Decomposition by
Basis Pursuit,” SIAM Journal on Scientific Computing, vol. 20, no. 1, pp.
33–61, 1998.

[59] A. Chistov, H. Fournier, L. Gurvits, and P. Koiran, “Vandermonde Matrices,
NP-Completeness, and Transversal Subspaces,” Foundations of Computational
Mathematics, vol. 3, no. 4, pp. 421–427, 2003.

[60] J. J. Cho, Y. Chen, and Y. Ding, “On the (Co)Girth of a Connected Matroid,”
Discrete Applied Mathematics, vol. 155, no. 18, pp. 2456–2470, 2007.

[61] M. Cho and W. Xu, “Precisely Verifying the Null Space Conditions in Com-
pressed Sensing: A Sandwiching Algorithm,” arXiv:1306.2665 [cs.IT], 2013.

[62] V. Chvátal, Linear Programming. New York, NY, USA: W. H. Freeman and
Company, 1983.

[63] A. Cohen, W. Dahmen, and R. A. DeVore, “Adaptive Wavelet Methods. II.
Beyond the Elliptic Case,” Foundations of Computational Mathematics, vol. 2,
no. 3, pp. 203–245, 2002.

[64] A. Cohen, W. Dahmen, and R. A. DeVore, “Compressed Sensing and Best k-
Term Approximation,” Journal of the American Mathematical Society, vol. 22,
no. 1, pp. 211–231, 2009.

[65] T. F. Coleman, “Sparse Null Bases and Marriage Theorems,” Ph.D. disserta-
tion, Cornell University, Ithaca, NY, USA, 1984.

http://nuit-blanche.blogspot.co.at
http://nuit-blanche.blogspot.co.at

216 Bibliography

[66] T. F. Coleman and A. Pothen, “The Sparse Null Space Basis Problem,” Cornell
University, Ithaca, NY, USA, Tech. Rep. TR 84-598, 1984.

[67] T. F. Coleman and A. Pothen, “The Null Space Problem I. Complexity,” SIAM
Journal on Algebraic and Discrete Methods, vol. 7, no. 4, pp. 527–537, 1986.

[68] T. F. Coleman and A. Pothen, “The Null Space Problem II. Algorithms,”
SIAM Journal on Algebraic and Discrete Methods, vol. 8, no. 4, pp. 544–563,
1987.

[69] P. L. Combettes, Ð. Dũng, and B. C. Vũ, “Dualization of Signal Recovery
Problems,” Set-Valued and Variational Analysis, vol. 18, no. 3–4, pp. 373–
404, 2010.

[70] P. L. Combettes and J. Luo, “An Adaptive Level Set Method for Nondifferen-
tiable Constrained Image Recovery,” IEEE Transactions on Image Processing,
vol. 11, no. 11, pp. 1295–1304, 2002.

[71] P. L. Combettes and J.-C. Pesquet, “Proximal Splitting Methods in Signal
Processing,” in Fixed-Point Algorithms for Inverse Problems in Science and
Engineering, ser. Optimization and Its Applications, vol. 49, H. H. Bauschke,
R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz,
Eds. New York, NY, USA: Springer, 2011, ch. 10, pp. 185–212.

[72] P. L. Combettes and V. R. Wajs, “Signal Recovery by Proximal Forward-
Backward Splitting,” Multiscale Modeling & Simulation, vol. 4, no. 4, pp.
1168–1200, 2005.

[73] (2013, September) Compressive Sensing Resources. Available online:
http://dsp.rice.edu/cs

[74] Y.-H. Dai, “Fast Algorithms for Projection on an Ellipsoid,” SIAM Journal
on Optimization, vol. 16, no. 4, pp. 986–1006, 2006.

[75] G. D’Antonio and A. Frangioni, “Convergence Analysis of Deflected Condi-
tional Approximate Subgradient Methods,” SIAM Journal on Optimization,
vol. 20, no. 1, pp. 357–386, 2009.

[76] A. d’Aspremont, F. Bach, and L. E. Ghaoui, “Optimal Solutions for Sparse
Principal Component Analysis,” Journal of Machine Learning Research, vol. 9,
no. Jul, pp. 1269–1294, 2008.

[77] A. d’Aspremont and L. E. Ghaoui, “Testing the Nullspace Property Using
Semidefinite Programming,” Mathematical Programming, vol. 127, no. 1, pp.
123–144, 2011.

[78] A. d’Aspremont, L. E. Ghaoui, M. I. Jordan, and G. R. G. Lanckriet, “A
Direct Formulation for Sparse PCA Using Semidefinite Programming,” SIAM
Review, vol. 49, no. 3, pp. 434–448, 2007.

[79] I. Daubechies, M. Defrise, and C. De Mol, “An Iterative Thresholding Al-
gorithm for Linear Inverse Problems with a Sparsity Constraint,” Commu-

http://dsp.rice.edu/cs

Bibliography 217

nications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457,
2004.

[80] M. A. Davenport and M. B. Wakin, “Analysis of Orthogonal Matching Pursuit
Using the Restricted Isometry Property,” IEEE Transactions on Information
Theory, vol. 56, no. 9, pp. 4395–4401, 2010.

[81] M. E. Davies and R. Gribonval, “Restricted Isometry Constants where `p

Sparse Recovery Can Fail for 0 < p ≤ 1,” IEEE Transactions on Information
Theory, vol. 55, no. 5, pp. 2203–2214, 2009.

[82] G. M. Davis, “Adaptive Nonlinear Approximations,” Ph.D. dissertation, New
York University, NY, USA, 1994.

[83] G. M. Davis, S. G. Mallat, and Z. Zhang, “Adaptive Time-Frequency Decom-
positions,” Optical Engineering, vol. 33, no. 7, pp. 2183–2191, 1994.

[84] S. De Marchi, “Generalized Vandermonde Determinants, Toeplitz Matrices
and Schur Functions,” Universität Dortmund, Germany, Ergebnisberichte
Angewandte Mathematik, vol. 176, 1999.

[85] R. A. DeVore, “Deterministic Constructions of Compressed Sensing Matrices,”
Journal of Complexity, vol. 23, no. 4–6, pp. 918–925, 2007.

[86] T. E. Dielman, “Least Absolute Value Regression: Recent Contributions,”
Journal of Statistical Computation and Simulation, vol. 75, no. 4, pp. 263–
286, 2005.

[87] D. L. Donoho, “De-noising by Soft Thresholding,” IEEE Transactions on In-
formation Theory, vol. 41, no. 3, pp. 613–627, 1995.

[88] D. L. Donoho, “Neighborly Polytopes and Sparse Solutions to Underdeter-
mined Linear Equations,” Stanford University, Stanford, CA, USA, Tech. Rep.
2005-04, 2005.

[89] D. L. Donoho, “Compressed Sensing,” IEEE Transactions on Information The-
ory, vol. 52, no. 4, pp. 1289–1306, 2006.

[90] D. L. Donoho and M. Elad, “Optimally Sparse Representation in General
(Non-Orthogonal) Dictionaries via `1 Minimization,” Proceedings of the Na-
tional Academy of Sciences (USA), vol. 100, no. 5, pp. 2197–2202, 2003.

[91] D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable Recovery of Sparse
Overcomplete Representations in the Presence of Noise,” IEEE Transactions
on Information Theory, vol. 52, no. 1, pp. 6–18, 2006.

[92] D. L. Donoho and X. Huo, “Uncertainty Principles and Ideal Atomic De-
composition,” IEEE Transactions on Information Theory, vol. 47, no. 7, pp.
2845–2862, 2001.

[93] D. L. Donoho and Y. Tsaig, “Fast Solution of `1-Norm Minimization Prob-
lems when the Solution May Be Sparse,” IEEE Transactions on Information
Theory, vol. 54, no. 11, pp. 4789–4812, 2008.

218 Bibliography

[94] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse Solution of Under-
determined Systems of Linear Equations by Stagewise Orthogonal Matching
Pursuit,” IEEE Transactions on Information Theory, vol. 58, no. 2, pp. 1094–
1121, 2012.

[95] J. Duan, C. Soussen, D. Brie, J. Idier, and Y.-P. Wang, “A Sufficient Condition
on Monotonic Increase of the Number of Nonzero Entry in the Optimizer of
L1 Norm Penalized Least-Square Problem,” arXiv:1104.3792 [stat.ML], 2011.

[96] J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra, “Efficient Projections
onto the `1-Ball for Learning in High Dimensions,” in Proceedings of the 25th
International Conference on Machine Learning (ICML). New York, NY,
USA: ACM, 2008, pp. 272–279.

[97] M. Dür, A. Martin, and S. Ulbrich, “Optimierung I – Einführung in die
Optimierung,” Lecture Notes, TU Darmstadt, Germany, 2009, in German.
Available online: http://www.mathematik.tu-darmstadt.de/lehrmaterial/
WS2008-2009/Opt_Einf/Skript/skript_Opt1.pdf

[98] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least Angle Regression,”
The Annals of Statistics, vol. 32, no. 2, pp. 407–499, 2004.

[99] S. Egner and T. Minkwitz, “Sparsification of Rectangular Matrices,” Journal
of Symbolic Computation, vol. 26, no. 2, pp. 135–149, 1998.

[100] M. Elad, Sparse and Redundant Representations: From Theory to Applications
in Signal and Image Processing. Heidelberg, Germany: Springer, 2010.

[101] M. Elad and A. M. Bruckstein, “A Generalized Uncertainty Principle and
Sparse Representations in Pairs of Bases,” IEEE Transactions on Information
Theory, vol. 48, no. 9, pp. 2558–2567, 2002.

[102] M. Elad, P. Milanfar, and R. Rubinstein, “Analysis versus Synthesis in Signal
Priors,” Inverse Problems, vol. 23, pp. 947–968, 2007.

[103] J. Erickson, “New Lower Bounds for Convex Hull Problems in Odd Dimen-
sions,” in Proceedings of the 12th Annual ACM Symposium on Computational
Geometry (SCG). New York, NY, USA: ACM, 1996, pp. 1–9.

[104] M. J. Fadili and J.-L. Starck, “Monotone Operator Splitting for Optimization
Problems in Sparse Recovery,” in Proceedings of the 16th IEEE International
Conference on Image Processing (ICIP). IEEE, 2009, pp. 1461–1464.

[105] M. C. Ferris, “Weak Sharp Minima and Exact Penalty Functions,” University
of Wisconsin, Madison, WI, USA, Tech. Rep. 779, 1988.

[106] A. Feuer and A. Nemirovski, “On Sparse Representation in Pairs of Bases,”
IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1579–1581,
2003.

[107] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient Projection

http://www.mathematik.tu-darmstadt.de/lehrmaterial/WS2008-2009/Opt_Einf/Skript/skript_Opt1.pdf
http://www.mathematik.tu-darmstadt.de/lehrmaterial/WS2008-2009/Opt_Einf/Skript/skript_Opt1.pdf

Bibliography 219

for Sparse Reconstruction: Applications to Compressed Sensing and Other In-
verse Problems,” IEEE Journal of Selected Topics in Signal Processing, vol. 4,
no. 1, pp. 586–597, 2007.

[108] M. Fornasier, Ed., Theoretical Foundations and Numerical Methods for Sparse
Recovery, ser. Radon Series on Computational and Applied Mathematics,
vol. 9. Berlin, Germany: De Gruyter, 2010.

[109] M. Fornasier and H. Rauhut, “Compressive Sensing,” in Handbook of Mathe-
matical Methods in Imaging, vol. 1, O. Scherzer, Ed. Berlin, Heidelberg, New
York: Springer, 2011, pp. 187–228.

[110] S. Foucart and M.-J. Lai, “Sparsest Solutions of Underdetermined Linear Sys-
tems via `q-Minimization for 0 ≤ q ≤ 1,” Applied and Computational Har-
monic Analysis, vol. 26, no. 3, pp. 395–407, 2009.

[111] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sens-
ing, ser. Applied and Numerical Harmonic Analysis. Basel, Switzerland:
Birkhäuser, 2013.

[112] S. Friedland, “Bounds on the Spectral Radius of Graphs with e Edges,” Linear
Algebra and its Applications, vol. 101, pp. 81–86, 1988.

[113] M. P. Friedlander and P. Tseng, “Exact Regularization of Convex Programs,”
SIAM Journal on Optimization, vol. 18, no. 4, pp. 1326–1350, 2007.

[114] J.-J. Fuchs, “On Sparse Representations in Arbitrary Redundant Bases,” IEEE
Transactions on Information Theory, vol. 50, no. 6, pp. 1341–1344, 2004.

[115] M. R. Garey and D. S. Johnson, Computers and Intractability. A Guide to the
Theory of NP-completeness. San Francisco, CA, USA: W. H. Freeman and
Company, 1979.

[116] D. Ge, X. Jiang, and Y. Ye, “A Note on the Complexity of Lp Minimization,”
Mathematical Programming, vol. 129, no. 2, pp. 285–299, 2011.

[117] J. R. Gilbert and M. T. Heath, “Computing a Sparse Basis for the Null Space,”
SIAM Journal on Algebraic and Discrete Methods, vol. 8, no. 3, pp. 446–459,
1987.

[118] P. E. Gill, W. Murray, and M. H. Wright, Numerical Linear Algebra and
Optimization, vol. 1. Redwood City, CA, USA: Addison-Wesley Publishing
Company, 1991.

[119] GNU Scientific Library (GSL). Extension: Bundle. Available online:
http://www.gnu.org/software/gsl

[120] J. L. Goffin and K. C. Kiwiel, “Convergence of a Simple Subgradient Level
Method,” Mathematical Programming, vol. 85, no. 1, pp. 207–211, 1999.

[121] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD, USA: Johns Hopkins University Press, 1996.

http://www.gnu.org/software/gsl

220 Bibliography

[122] C. C. Gonzaga, “An Algorithm for Solving Linear Programming Problems
in O(n3L) Operations,” in Progress in Mathematical Programming: Interior-
point and related methods, N. Megiddo, Ed. New York, NY, USA: Springer,
1988, pp. 1–28.

[123] L.-A. Gottlieb and T. Neylon, “Matrix Sparsification and the Sparse Null
Space Problem,” in Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (Proceedings APPROX 2010 and RAN-
DOM 2010), ser. Lecture Notes in Computer Science, vol. 6302, M. Serna,
R. Shaltiel, K. Jansen, and J. Rolim, Eds. Berlin, Heidelberg, Germany:
Springer, 2010, pp. 205–218.

[124] S.-M. Grad, “New Insights into Conjugate Duality,” Dissertation, Technische
Universität Chemnitz, Germany, 2006.

[125] M. Grasmair, M. Haltmeier, and O. Scherzer, “Necessary and Sufficient Condi-
tions for Linear Convergence of `1-Regularization,” Communications on Pure
and Applied Mathematics, vol. 64, no. 2, pp. 161–182, 2011.

[126] R. Gribonval and M. Nielsen, “Sparse Representations in Unions of Bases,”
IEEE Transactions on Information Theory, vol. 49, no. 12, pp. 3320–3325,
2003.

[127] R. Griesse and D. A. Lorenz, “A semismooth Newton method for Tikhonov
functionals with sparsity constraints,” Inverse Problems, vol. 24, no. 3, p.
035007, 2008.

[128] M. Grötschel, L. Lovász, and A. Schrijver, Geometric Algorithms and Com-
binatorial Optimization, 2nd ed., ser. Algorithms and Combinatorics, vol. 2.
Heidelberg, Germany: Springer, 1993.

[129] M. Held, P. Wolfe, and H. P. Crowder, “Validation of Subgradient Optimiza-
tion,” Mathematical Programming, vol. 6, pp. 62–88, 1974.

[130] C. Helmberg. Conic Bundle. Available online: http://www-user.tu-chemnitz.
de/~helmberg/ConicBundle

[131] M. A. Herman and T. Strohmer, “High-Resolution Radar via Compressed
Sensing,” IEEE Transactions on Signal Processing, vol. 57, no. 6, pp. 2275–
2284, 2009.

[132] F. J. Herrmann and G. Hennenfent, “Non-Parametric Seismic Data Recovery
with Curvelet Frames,” Geophysical Journal International, vol. 73, no. 1, pp.
233–248, 2008.

[133] M. R. Hestenes and E. Stiefel, “Methods of Conjugate Gradients for Solving
Linear Systems,” Journal of Research of the National Bureau of Standards,
vol. 49, no. 6, pp. 409–436, 1952.

[134] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization
Algorithms. II (Advanced Theory and Bundle Methods), ser. Grundlehren

http://www-user.tu-chemnitz.de/~helmberg/ConicBundle
http://www-user.tu-chemnitz.de/~helmberg/ConicBundle

Bibliography 221

der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences], vol. 306. Heidelberg, Germany: Springer, 1993.

[135] J.-B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis.
Heidelberg, Germany: Springer, 2004, corrected 2nd printing.

[136] H. P. Hirst and W. T. Macey, “Bounding the Roots of Polynomials,” The
College Mathematics Journal, vol. 28, no. 4, pp. 292–295, 1997.

[137] A. J. Hoffman and S. T. McCormick, “A Fast Algorithm that Makes Ma-
trices Optimally Sparse,” in Progress in Combinatorial Optimization, W. R.
Pulleyblank, Ed. Canada: Academic Press, 1984, pp. 185–196.

[138] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. New York, NY,
USA: Cambridge University Press, 2013.

[139] E. Hübner, “A Bundle Method for Solving Convex Non-Smooth Minimization
Problems,” CiteSeerX preprint, DOI:10.1.1.92.2486, 2006.

[140] “IBM ILOG Cplex Optimization Studio 12.5,” http://www-01.ibm.com/
software/integration/optimization/cplex-optimization-studio.

[141] A. Itai and M. Rodeh, “Finding a Minimum Circuit in a Graph,” SIAM Journal
on Computing, vol. 7, no. 4, pp. 413–423, 1978.

[142] M. A. Iwen, “Simple Deterministically Constructible RIP Matrices with Sub-
linear Fourier Sampling Requirements,” in Proceedings of the 43rd Annual
Conference on Information Sciences and Systems (CISS). IEEE, 2009, pp.
870–875.

[143] S. Jokar and M. E. Pfetsch, “Exact and Approximate Sparse Solutions of
Underdetermined Linear Equations,” SIAM Journal on Scientific Computing,
vol. 31, no. 1, pp. 23–44, 2008.

[144] M. Journée, Y. E. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized
Power Method for Sparse Principal Component Analysis,” Journal of Machine
Learning Research, vol. 11, pp. 517–533, 2010.

[145] A. Juditsky and A. Nemirovski, “On Verifiable Sufficient Conditions for Sparse
Signal Recovery via `1 Minimization,” Mathematical Programming, vol. 127,
no. 1, pp. 57–88, 2011.

[146] P. Kall and J. Mayer, Stochastic Linear Programming. Models, Theory, and
Computation, 2nd ed., ser. International Series in Operations Research &
Management Science, vol. 156. New York, Dordrecht, Heidelberg, London:
Springer, 2011.

[147] R. M. Karp, “Reducibility among Combinatorial Problems,” in Complexity of
Computer Computations, R. Miller and J. W. Thatcher, Eds. New York, NY,
USA: Plenum Press, 1972, pp. 85–103.

[148] L. Khachiyan, “On the Complexity of Approximating Extremal Determinants
in Matrices,” Journal of Complexity, vol. 11, pp. 138–153, 1995.

http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio

222 Bibliography

[149] M. Khorramizadeh and N. Mahdavi-Amiri, “An Efficient Algorithm for Sparse
Null Space Basis Problem Using ABS Methods,” Numerical Algorithms,
vol. 62, no. 3, pp. 469–485, 2013.

[150] S. Kim, H. Ahn, and S.-C. Cho, “Variable Target Value Subgradient Method,”
Mathematical Programming, vol. 49, no. 3, pp. 359–369, 1991.

[151] Y. N. Kiseliov, “Algorithms of Projection of a Point onto an Ellipsoid,” Lithua-
nian Mathematical Journal, vol. 34, no. 2, pp. 141–159, 1994.

[152] K. C. Kiwiel, “Proximity Control in Bundle Methods for Convex Nondifferen-
tiable Minimization,” Mathematical Programming, vol. 46, no. 1, pp. 105–122,
1990.

[153] K. C. Kiwiel, “Subgradient Method with Entropic Projections for Convex
Nondifferentiable Minimization,” Journal on Optimization Theory and Appli-
cations, vol. 96, no. 1, pp. 159–173, 1998.

[154] K. C. Kiwiel, “Convergence of Approximate and Incremental Subgradient
Methods for Convex Optimization,” SIAM Journal on Optimization, vol. 14,
no. 3, pp. 807–840, 2004.

[155] V. Klee and G. J. Minty, “How Good is the Simplex Algorithm?” in Inequal-
ities, III, O. Shisha, Ed. New York, NY, USA: Academic Press, 1972, pp.
159–175.

[156] W. K. Klein Haneveld, Duality in Stochastic Linear and Dynamic Program-
ming, ser. Lecture Notes in Economics and Mathematical Systems, vol. 274.
New York, NY, USA: Springer, 1986.

[157] W. K. Klein Haneveld and M. H. van der Vlerk, “Integrated Chance Con-
straints: Reduced Forms and an Algorithm,” Computational Management Sci-
ence, vol. 3, no. 4, pp. 245–269, 2006.

[158] P. Koiran and A. Zouzias, “On the Certification of the Restricted Isometry
Property,” arXiv:1103.4984 [cs.CC], 2011.

[159] P. Koiran and A. Zouzias, “Hidden Cliques and the Certification of the Re-
stricted Isometry Property,” arXiv:1211.0665 [cs.CC], 2012.

[160] T. G. Kolda and B. W. Bader, “Tensor Decompositions and Applications,”
SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.

[161] B. Korte and J. Vygen, Combinatorial Optimization. Theory and Algorithms,
5th ed., ser. Algorithms and Combinatorics, vol. 21. Berlin, Germany:
Springer, 2011.

[162] C. Kruschel and D. A. Lorenz, “Computing and Analyzing Recoverable Sup-
ports for Sparse Reconstruction,” arXiv:1309.2460 [math.OC], 2013.

[163] J. B. Kruskal, “Three-Way Arrays: Rank and Uniqueness of Trilinear Decom-
positions, with Application to Arithmetic Complexity and Statistics,” Linear
Algebra and its Applications, vol. 18, no. 2, pp. 95–138, 1977.

Bibliography 223

[164] D. Kuhn, “Convergent Bounds for Stochastic Programs with Expected Value
Constraints,” Journal of Optimization Theory and Applications, vol. 141, no. 3,
pp. 597–618, 2009.

[165] G. Kutyniok and Y. C. Eldar, Eds., Compressed Sensing: Theory and Appli-
cations. New York, NY, USA: Cambridge University Press, 2012.

[166] T. Larsson, M. Patriksson, and A.-B. Strömberg, “Conditional Subgradient
Optimization – Theory and Applications,” European Journal of Operations
Research, vol. 88, no. 2, pp. 382–403, 1996.

[167] K. Lee and Y. Bressler, “Computing Performance Guarantees for Compressed
Sensing,” in Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2008, pp. 5129–5132.

[168] A. S. Lewis, D. R. Luke, and J. Malick, “Local Linear Convergence for Alter-
nating and Averaged Nonconvex Projections,” Foundations of Computational
Mathematics, vol. 9, no. 4, pp. 485–513, 2009.

[169] X. Li and S. Luo, “A Compressed Sensing-based Iterative Algorithm for CT
Reconstruction and Its Possible Application to Phase Contrast Imaging,”
BioMedical Engineering OnLine, vol. 10, no. 1 (paper no. 73), 2011.

[170] C. Lim and H. D. Sherali, “Convergence and Computational Analyses for Some
Variable Target Value and Subgradient Deflection Methods,” Computational
Optimization and Applications, vol. 34, no. 3, pp. 409–428, 2005.

[171] L.-H. Lim and P. Comon, “Multiarray Signal Processing: Tensor Decomposi-
tion Meets Compressed Sensing,” Comptes Rendus Mécanique, vol. 338, no. 6,
pp. 311–320, 2010.

[172] A. Löbel, “Optimal Vehicle Scheduling in Public Transit,” Dissertation, Tech-
nische Universität Berlin, Germany, 1998.

[173] D. A. Lorenz, “Constructing Test Instances for Basis Pursuit Denoising,” IEEE
Transactions on Signal Processing, vol. 61, no. 5, pp. 1210–1214, 2013.

[174] D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann, “Solving Basis Pursuit:
Heuristic Optimality Check and Solver Comparison,” 2011. Available online:
http://www.optimization-online.org/DB_HTML/2011/08/3132.html

[175] D. A. Lorenz, M. E. Pfetsch, and A. M. Tillmann, “An Infeasible-Point Sub-
gradient Method Using Adaptive Approximate Projections,” Computational
Optimization and Applications, vol. 57, no. 2, pp. 271–306, 2014.

[176] D. A. Lorenz, S. Schiffler, and D. Trede, “Beyond Convergence Rates: Exact
Inversion with Tikhonov Regularization with Sparsity Constraints,” Inverse
Problems, vol. 27, no. 8, p. 085009, 2011.

[177] R. Luss and M. Teboulle, “Conditional Gradient Algorithms for Rank-One
Matrix Approximations with a Sparsity Constraint,” SIAM Review, vol. 55,
no. 1, pp. 65–98, 2013.

http://www.optimization-online.org/DB_HTML/2011/08/3132.html

224 Bibliography

[178] M. Lustig, D. L. Donoho, and J. M. Pauly, “Sparse MRI: The Applica-
tion of Compressed Sensing for Rapid MR Imaging,” Magnetic Resonance
in Medicine, vol. 58, no. 6, pp. 1182–1195, 2007.

[179] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed Sensing
MRI,” IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 72–82, 2008.

[180] J. Mairal and B. Yu, “Complexity Analysis of the Lasso Regularization Path,”
in Proceedings of 29th International Conference on Machine Learning (ICML),
J. Langford and J. Pineau, Eds. Madison, WI, USA: Omnipress, 2012, pp.
353–360.

[181] D. Malioutov, M. Çetin, and A. Willsky, “Homotopy Continuation for Sparse
Signal Representation,” in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5. IEEE, 2005,
pp. 733–736.

[182] S. G. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.
USA: Academic Press, 2008.

[183] S. G. Mallat and Z. Zhang, “Matching Pursuits with Time-Frequency Dictio-
naries,” IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3397–
3415, 1993.

[184] O. L. Mangasarian, “Minimum-Support Solutions of Polyhedral Concave Pro-
grams,” Optimization, vol. 45, no. 1-4, pp. 149–162, 1999.

[185] S. T. McCormick, “A Combinatorial Approach to some Sparse Matrix Prob-
lems,” Ph.D. dissertation, Stanford University, CA, USA, 1983.

[186] S. T. McCormick, “Making Sparse Matrices Sparser: Computational Results,”
Mathematical Programming, vol. 49, no. 1, pp. 91–111, 1990.

[187] N. Megiddo, “On Finding Primal- and Dual-Optimal Bases,” ORSA Journal
on Computing, vol. 3, no. 1, pp. 63–65, 1991.

[188] A. Milzarek and M. Ulbrich, “A Semismooth Newton Method
with Multi-Dimensional Filter Globalization for `1-Optimization,” 2013.
Available online: http://www-m1.ma.tum.de/foswiki/pub/M1/Lehrstuhl/
PublikationenUlbrich/MilzarekUlbrich-v2.pdf

[189] Q. Mo and Y. Shen, “A Remark on the Restricted Isometry Property in
Orthogonal Matching Pursuit,” IEEE Transactions on Information Theory,
vol. 58, no. 6, pp. 3654–3656, 2012.

[190] T. S. Motzkin and I. J. Schoenberg, “The Relaxation Method for Linear In-
equalities,” Canadian Journal of Mathematics, vol. 6, pp. 393–404, 1954.

[191] S. Nam, M. E. Davies, M. Elad, and R. Gribonval, “The Cosparse Analy-
sis Model and Algorithms,” Applied and Computational Harmonic Analysis,
vol. 34, no. 1, pp. 30–56, 2013.

http://www-m1.ma.tum.de/foswiki/pub/M1/Lehrstuhl/PublikationenUlbrich/MilzarekUlbrich-v2.pdf
http://www-m1.ma.tum.de/foswiki/pub/M1/Lehrstuhl/PublikationenUlbrich/MilzarekUlbrich-v2.pdf

Bibliography 225

[192] B. K. Natarajan, “Sparse Approximate Solutions to Linear Systems,” SIAM
Journal on Computing, vol. 24, no. 2, pp. 227–234, 1995.

[193] A. Nedić and D. P. Bertsekas, “Incremental Subgradient Methods for Nondif-
ferentiable Optimization,” SIAM Journal on Optimization, vol. 12, no. 1, pp.
109–138, 2001.

[194] A. Nedić and D. P. Bertsekas, “The Effect of Deterministic Noise in Subgra-
dient Methods,” Mathematical Programming, vol. 125, no. 1, pp. 75–99, 2010.

[195] D. Needell and J. A. Tropp, “CoSaMP: Iterative Signal Recovery from Incom-
plete and Inaccurate Samples,” Applied and Computational Harmonic Analy-
sis, vol. 26, no. 3, pp. 301–321, 2009.

[196] D. Needell and R. Vershynin, “Uniform Uncertainty Principle and Signal Re-
covery via Regularized Orthogonal Matching Pursuit,” Foundations of Com-
putational Mathematics, vol. 9, no. 3, pp. 317–334, 2009.

[197] A. S. Nemirovskiy and B. T. Polyak, “Iterative Methods for Solving Linear
Ill-Posed Problems Under Precise Information. I,” Izvestiya Akademii Nauk
SSSR. Tekhnicheskaya Kibernetika 5, vol. 203, no. 2, pp. 13–2, 1984.

[198] Y. E. Nesterov, “A Method for Solving the Convex Programming Problem
with Convergence Rate O(1/k2),” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[199] Y. E. Nesterov, “Smooth Minimization of Non-Smooth Functions,” Mathemat-
ical Programming, vol. 103, no. 1, pp. 127–152, 2005.

[200] Y. E. Nesterov, “Gradient Methods for Minimizing Composite Objective
Function,” CORE discussion paper 2007/76, 2007. Available online:
http://www.optimization-online.org/DB_HTML/2007/09/1784.html

[201] E. S. H. Neto and A. R. D. Pierro, “Incremental Subgradients for Constrained
Convex Optimization: A Unified Framework and New Methods,” SIAM Jour-
nal on Optimization, vol. 20, no. 3, pp. 1547–1572, 2009.

[202] T. Neylon, “Sparse Solutions for Linear Predictor Problems,” Ph.D. disserta-
tion, New York University, NY, USA, 2006.

[203] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., ser. Springer
Series in Operations Research and Financial Engineering. New York, NY,
USA: Springer, 2006.

[204] M. Osbourne, B. Presnell, and B. Turlach, “A New Approach to Variable
Selection in Least Squares Problems,” IMA Journal of Numerical Analysis,
vol. 20, no. 3, pp. 389–402, 2000.

[205] J. G. Oxley, Matroid Theory. New York, NY, USA: Oxford Graduate Texts
in Mathematics, 1992.

[206] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity. Upper Saddle River, NJ, USA: Prentice-Hall, 1982.

http://www.optimization-online.org/DB_HTML/2007/09/1784.html

226 Bibliography

[207] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal Matching Pur-
suit: Recursive Function Approximation with Applications to Wavelet Decom-
position,” in Proceedings of the 27th Annual Asilomar Conference on Signals,
Systems and Computers, vol. 1. Pacific Grove, CA, USA: IEEE Computer
Society Press, 1993, pp. 40–44.

[208] M. J. Piff and D. J. A. Welsh, “On the Vector Representation of Matroids,”
Journal of the London Mathematical Society, vol. 2, no. 2, pp. 284–288, 1970.

[209] A. Pinar, E. Chow, and A. Pothen, “Combinatorial Algorithms for Computing
Column Space Bases That Have Sparse Inverses,” Electronic Transactions on
Numerical Analysis, vol. 22, pp. 122–145, 2006.

[210] M. D. Plumbley, T. Blumensath, L. Daudet, R. Gribonval, and M. E. Davies,
“Sparse Representations in Audio and Music: From Coding to Source Separa-
tion,” Proceedings of the IEEE, vol. 98, no. 6, pp. 995–1005, 2010.

[211] B. T. Polyak, “A General Method for Solving Extremal Problems,” Doklady
Akademii Nauk SSSR, vol. 174, no. 1, pp. 33–36, 1967.

[212] B. T. Polyak, “Minimization of Nonsmooth Functionals,” USSR Computa-
tional Mathematics and Mathematical Physics, vol. 9, no. 3, pp. 14–29, 1969.

[213] B. T. Polyak, “Subgradient Methods: A Survey of Soviet Research,” in Nons-
mooth Optimization, ser. IIASA Proceedings Series, vol. 3, C. Lemaréchal and
R. Mifflin, Eds. Oxford, UK: Pergamon Press, 1978, pp. 5–29.

[214] L. C. Potter, E. Ertin, J. T. Parker, and M. Çetin, “Sparsity and Compressed
Sensing in Radar Imaging,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1006–
1020, 2010.

[215] A. Prékopa, “Contributions to the Theory of Stochastic Programming,” Math-
ematical Programming, vol. 4, no. 1, pp. 202–221, 1973.

[216] J. F. Queiró, “On the Interlacing Property for Singular Values and Eigenval-
ues,” Linear Algebra and Its Applications, vol. 97, pp. 23–28, 1987.

[217] B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed Minimum-Rank Solutions
of Linear Matrix Equations via Nuclear Norm Minimization,” SIAM Review,
vol. 52, no. 3, pp. 471–501, 2010.

[218] R. T. Rockafellar, “Duality and Stability in Extremum Problems Involving
Convex Functions,” Pacific Journal of Mathematics, vol. 21, no. 1, pp. 167–
187, 1967.

[219] R. T. Rockafellar, Conjugate Duality and Optimization, ser. CBMS-NSF Re-
gional Conference Series in Applied Mathematics, vol. 16. Philadelphia, PA,
USA: SIAM, 1974.

[220] R. T. Rockafellar, “Monotone Operators and the Proximal Point Algorithm,”
SIAM Journal on Control and Optimization, vol. 14, no. 5, pp. 877–898, 1976.

Bibliography 227

[221] A. Ruszczyński, Nonlinear Optimization. Princeton, NJ, USA: Princeton
University Press, 2006.

[222] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, 2003.
[223] S. Salzo and S. Villa, “Inexact and Accelerated Proximal Point Algorithms,”

Journal of Convex Analysis, vol. 19, no. 4, pp. 1167–1192, 2012.
[224] A. Schrijver, Theory of Linear and Integer Programming, ser. Wiley-

Interscience Series in Discrete Mathematics and Optimization. New York,
NY, USA: John Wiley & Sons, 1986.

[225] S. R. Searle, Matrix Algebra Useful for Statistics, ser. Wiley Series in Proba-
bility and Statistics. New York, Chichester, Brisbane: John Wiley & Sons,
1982.

[226] H. D. Sherali, G. Choi, and C. H. Tuncbilek, “A Variable Target Value Method
for Nondifferentiable Optimization,” Operations Research Letters, vol. 26,
no. 1, pp. 1–8, 2000.

[227] J. R. Shewchuk, “An Introduction to the Conjugate Gradient Method Without
the Agonizing Pain,” Carnegie Mellon University, Pittsburgh, PA, USA, Tech.
Rep. CMU-CS-TR-94-125, 1994.

[228] N. Z. Shor, Minimization Methods for Non-Differentiable Functions. New
York, NY, USA: Springer, 1985.

[229] M. V. Solodov and S. K. Zavriev, “Error Stability Properties of Generalized
Gradient-Type Algorithms,” Journal of Optimization Theory and Applica-
tions, vol. 98, no. 3, pp. 663–680, 1998.

[230] (2013, September) Sparse- and Low-Rank Approximation Wiki. Available
online: http://www.ugcs.caltech.edu/~srbecker/wiki

[231] J.-L. Starck, F. Murtagh, and J. M. Fadili, Sparse Image and Signal Pro-
cessing: Wavelets, Curvelets, Morphological Diversity. New York, NY, USA:
Cambridge University Press, 2010.

[232] T. Strohmer and R. W. H. Jr., “Grassmannian Frames with Applications to
Coding and Communications,” Applied and Computational Harmonic Analy-
sis, vol. 14, no. 3, pp. 257–275, 2003.

[233] B. L. Sturm, B. Mailhé, and M. D. Plumbley, “On Theorem 10 in "On Polar
Polytopes and the Recovery of Sparse Representations",” IEEE Transactions
on Information Theory, vol. 59, no. 8, pp. 5206–5209, 2013.

[234] M. A. Sustik, J. A. Tropp, I. S. Dhillon, and R. W. H. Jr., “On the Existence
of Equiangular Tight Frames,” Linear Algebra and its Applications, vol. 426,
pp. 619–635, 2007.

[235] R. Tibshirani, “Regression Shrinkage and Selection via the Lasso,” Journal of
the Royal Statistical Society B, vol. 58, no. 1, pp. 267–288, 1996.

http://www.ugcs.caltech.edu/~srbecker/wiki

228 Bibliography

[236] A. M. Tillmann, R. Gribonval, and M. E. Pfetsch, “Projection onto the k-
Cosparse Set is NP-hard,” arXiv:1303.5305 [cs.CC], 2013, accepted for Proc.
ICASSP 2014.

[237] A. M. Tillmann and M. E. Pfetsch, “The Computational Complexity of the
Restricted Isometry Property, the Nullspace Property, and Related Concepts
in Compressed Sensing,” IEEE Transactions on Information Theory, vol. 60,
no. 2, pp. 1248–1259, 2014.

[238] I. Tošić and P. Frossard, “Dictionary Learning,” IEEE Signal Processing Mag-
azine, vol. 28, no. 2, pp. 27–38, 2011.

[239] J. A. Tropp, “Greed is Good: Algorithmic Results for Sparse Approximation,”
IEEE Transactions on Information Theory, vol. 50, no. 10, pp. 2231–2242,
2004.

[240] J. A. Tropp, “Just Relax: Convex Programming Methods for Identifying
Sparse Signals in Noise,” IEEE Transactions on Information Theory, vol. 52,
no. 3, pp. 1030–1051, 2006.

[241] J. A. Tropp and A. C. Gilbert, “Signal Recovery from Random Measurements
via Orthogonal Matching Pursuit,” IEEE Transactions on Information The-
ory, vol. 53, no. 12, pp. 4655–5666, 2007.

[242] J. A. Tropp and S. J. Wright, “Computational Methods for Sparse Solution of
Linear Inverse Problems,” Proceedings of the IEEE, vol. 98, no. 6, pp. 948–958,
2010.

[243] P. Tseng, “Applications of a Splitting Algorithm to Decomposition in Convex
Programming and Variational Inequalities,” SIAM Journal on Control and
Optimization, vol. 29, no. 1, pp. 119–138, 1991.

[244] P. M. Vaidya, “An Algorithm for Linear Programming which RequiresO(((m+

n)n2 + (m + n)1.5n)L) Arithmetic Operations,” Mathematical Programming,
vol. 47, no. 1–3, pp. 175–201, 1990.

[245] E. van den Berg and M. P. Friedlander, “Probing the Pareto Frontier for Basis
Pursuit Solutions,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp.
890–912, 2008.

[246] E. van den Berg, M. Schmidt, M. P. Friedlander, and K. Murphy, “Group
Sparsity via Linear-Time Projection,” University of British Columbia, Tech.
Rep. TR-2008-09, 2008.

[247] J. H. van Lint, Introduction to Coding Theory, 3rd ed., ser. Graduate Texts in
Mathematics, vol. 86. Berlin, Heidelberg, Germany: Springer, 1999.

[248] C. van Nuffelen, “On the Incidence Matrix of a Graph,” IEEE Transactions
on Circuits and Systems, vol. 23, no. 9, p. 572, 1976.

[249] A. Vardy, “The Intractability of Computing the Minimum Distance of a Code,”
IEEE Transactions on Information Theory, vol. 43, no. 6, pp. 1757–1766, 1997.

Bibliography 229

[250] S. Villa, S. Salzo, L. Baldassarre, and A. Verri, “Accelerated and Inex-
act Forward-Backward Algorithms,” SIAM Journal on Optimization, vol. 23,
no. 3, pp. 1607–1633, 2011.

[251] Y. Wang and W. Yin, “Sparse Signal Reconstruction via Iterative Support
Detection,” SIAM Journal on Imaging Sciences, vol. 3, no. 3, pp. 462–491,
2010.

[252] L. R. Welch, “Lower Bounds on the Maximum Cross Correlation of Signals,”
IEEE Transactions on Information Theory, vol. 20, no. 3, pp. 397–399, 1974.

[253] Z. Wen, W. Yin, D. Goldfarb, and Y. Zhang, “A Fast Algorithm for Sparse Re-
construction Based on Shrinkage, Subspace Optimization and Continuation,”
SIAM Journal on Scientific Computing, vol. 32, no. 4, pp. 1832–1857, 2010.

[254] S. Wenger, M. Ament, S. Guthe, D. A. Lorenz, A. M. Tillmann, D. Weiskopf,
and M. Magnor, “Visualization of Astronomical Nebulae via Distributed
Multi-GPU Compressed Sensing Tomography,” IEEE Transactions on Visu-
alization and Computer Graphics, vol. 18, no. 12, pp. 2188–2197, 2012.

[255] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust Face
Recognition via Sparse Representation,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 31, no. 2, pp. 210–227, 2009.

[256] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse Reconstruc-
tion by Separable Approximation,” IEEE Transactions on Signal Processing,
vol. 57, no. 7, pp. 2479–2493, 2009.

[257] R. Wunderling, “Paralleler und objektorientierter Simplex-Algorithmus,” Dis-
sertation, Technische Universität Berlin, Germany, 1996, in German.

[258] A. Y. Yang, A. G. Balasubramanian, Z. Zhou, S. S. Sastry, and Y. Ma, “Fast
`1-Minimization Algorithms for Robust Face Recognition,” IEEE Transactions
on Image Processing, vol. 22, no. 8, pp. 3234–3246, 2013.

[259] J. Yang and Y. Zhang, “Alternating Direction Algorithms for `1-Problems in
Compressive Sensing,” Rice University, Houston, TX, USA, Tech. Rep. TR09-
37, 2009.

[260] Y. Ye, “An O(n3L) Potential Reduction Algorithm for Linear Programming,”
Mathematical Programming, vol. 50, no. 1–3, pp. 239–258, 1991.

[261] W. Yin, “Analysis and Generalizations of the Linearized Bregman Model,”
SIAM Journal on Imaging Sciences, vol. 3, no. 4, pp. 856–877, 2010.

[262] W. Yin, S. J. Osher, D. Goldfarb, and J. Darbon, “Bregman Iterative Algo-
rithms for `1-Minimization with Applications to Compressed Sensing,” SIAM
Journal on Imaging Sciences, vol. 1, no. 1, pp. 143–168, 2008.

[263] A. J. Zaslavski, “The Projected Subgradient Method for Nonsmooth Convex
Optimization in the Presence of Computational Error,” Numerical Functional
Analysis and Optimization, vol. 31, no. 5, pp. 616–633, 2010.

230 Bibliography

[264] H. Zhang, M. Yan, and W. Yin, “One Condition for All: Solution
Uniqueness and Robustness of `1-Synthesis and `1-Analysis Minimizations,”
arXiv:1304.5038 [cs.IT], 2013.

[265] H. Zhang, W. Yin, and L. Cheng, “Necessary and Sufficient Conditions of
Solution Uniqueness in `1 Minimization,” 2012, arXiv:1209.0652 [cs:IT].

[266] Y. Zhang, “Theory of Compressive Sensing via `1-Minimization: A Non-RIP
Analysis and Extensions,” Department of Computational and Applied Math-
ematics, Rice University, Houston, TX, USA, Tech. Rep. TR08-11 (revised),
2008.

[267] Y.-B. Zhao, “RSP-Based Analysis for Sparsest and Least `1-Norm Solutions to
Underdetermined Linear Systems,” IEEE Transactions on Signal Processing,
vol. 61, no. 22, pp. 5777–5788, 2013.

[268] L. Zhu, L. Lee, Y. Ma, Y. Ye, R. Mazzeo, and L. Xing, “Using Total-Variation
Regularization for Intensity Modulated Radiation Therapy Inverse Planning
with Field-Specific Numbers of Segments,” Physics in Medicine and Biology,
vol. 53, no. 23, pp. 6653–6672, 2008.

[269] Z. Zhu, A. Man-Cho So, and Y. Ye, “Fast and Near-Optimal Matrix Comple-
tion via Randomized Basis Pursuit,” in Proceedings of the Fifth International
Congress of Chinese Mathematicians, ser. AMS/IP Studies in Advanced Math-
ematics, vol. 51, L. Ji, Y. Sun Poon, L. Yang, and S.-T. Yau, Eds. Cambridge,
MA, USA: AMS and International Press, 2012, pp. 859–882.

[270] H. Zou, T. Hastie, and R. Tibshirani, “Sparse Principal Component Analysis,”
Journal of Computational and Graphical Statistics, vol. 15, no. 2, pp. 265–286,
2006.

List of Figures

1.1 Geometric intuition for sparsity promoting properties of `p-
minimization . 6

1.2 Sparse reconstruction by `1- and `2-minimization 7
1.3 CS Reconstruction from Noisy Incomplete Measurements 8

2.1 Schematic overview of the main SRC (co)NP-hardness results 53
2.2 Relations between SRCs and implications for (P1) and (P0) 54

3.1 Solution sparsities and mutual coherences in Basis Pursuit test set . 75
3.2 Numerical results (Basis Pursuit) for ISAL1 77
3.3 Numerical results (Basis Pursuit) for `1-Homotopy 78
3.4 Numerical results (Basis Pursuit) for `1-Magic 79
3.5 Numerical results (Basis Pursuit) for SolveBP/PDCO 80
3.6 Numerical results (Basis Pursuit) for SPGL1 81
3.7 Numerical results (Basis Pursuit) for YALL1 82
3.8 Numerical results (Basis Pursuit) for Cplex 83
3.9 Numerical results (Basis Pursuit) for SoPlex 83
3.10 Example: Impact of HOC when solving Basis Pursuit with ISAL1,

SPGL1 or `1-Magic . 89
3.11 Numerical Results (Basis Pursuit) for modified `1-Homotopy 94
3.12 Numerical Results (Basis Pursuit) for `1-Homotopy with relaxed final

regularization parameter . 95
3.13 Numerical Experiments: HOC for (Pδ1) in `1-Magic 123
3.14 Numerical Experiments: HOC for (Pδ1) in SPGL1 124
3.15 Numerical Experiments: HOC for (Pδ1) in ISAL1 126
3.16 Numerical Experiments: HOC for (QPλ) in SolveBP/PDCO 127
3.17 Numerical Experiments: HOC for (QPλ) in `1-Homotopy 128

4.1 Schematic illustration of different concepts of approximate projections 136

xv

xvi List of Figures

4.2 Subsequences of objective function values crucial to proving conver-
gence of the ISA method . 142

List of Tables

3.1 Matrix constructions and corresponding abbreviations 71
3.2 Basis Pursuit test set matrices . 72
3.3 Percentage of Basis Pursuit instances yielding different solution sta-

tuses, per solver . 84
3.4 Average running times of Basis Pursuit solvers (without HOC) aiming

at “solved” solution status . 86
3.5 Average running times of Basis Pursuit solvers (without HOC) aiming

at “acceptable” solution status . 87
3.6 Impact of HOC in Basis Pursuit solvers 90
3.7 Average running times of selected Basis Pursuit solvers (with HOC) 92
3.8 Impact of HOC for (Pδ1) on the runtimes of `1-Magic, ISAL1 and SPGL1123
3.9 Impact of HOC for (QPλ) on the runtimes of `1-Homotopy and

SolveBP/PDCO . 127

xvii

List of Algorithms

3.1 Exact Optimality Check (EOC) for Basis Pursuit 61
3.2 Heuristic Optimality Check (HOC) for Basis Pursuit 62
3.3 Heuristic Optimality Check (HOC) for Basis Pursuit Denoising 117
3.4 Heuristic Optimality Check (HOC) for `1-Regularized Least-

Squares . 119

4.1 Predetermined Step Size ISA 138
4.2 Dynamic Step Size ISA . 147
4.3 Variable Target Value ISA for Lipschitz-continuous objectives . 167
4.4 ISAL1 . 191

xix

	Introduction
	Finding Sparse Exact and Approximate Solutions to Underdetermined Linear Equation Systems
	Contributions and Outline of the Thesis
	Notation and Preliminaries

	Recovery Conditions and Their Computational Complexity
	Incoherence of the Sensing Matrix
	The Exact Recovery Condition (ERC)
	The Spark of a Matrix
	Complexity of Spark Computation
	Related Problems

	The Restricted Isometry Property (RIP)
	Complexity of RIP-based Recovery Conditions

	The Nullspace Property (NSP)
	Complexity of Computing the Nullspace Constant

	Summary

	Solving Basis Pursuit
	Heuristic Optimality Check
	Theoretical Foundation
	Practical Considerations
	HOC Success Guarantees

	Algorithms for Exact 1-Minimization
	ISAL1
	The Homotopy Method
	1-Magic
	SolveBP/PDCO
	SPGL1
	YALL1
	CPLEX
	SoPlex

	Test Set Description
	Computational Solver Comparison
	Numerical Results
	Impact of the Heuristic Optimality Check
	The Behavior of 1-Homotopy
	Conclusions

	Equivalence of Basis Pursuit and Linear Programming
	Related Work
	Preliminaries
	The Reduction
	Detailed Complexity Analysis

	Excursion into Basis Pursuit Denoising
	HOC for BP Denoising
	HOC for 1-Regularized Least-Squares
	Numerical Experiments

	ISA Framework for Nonsmooth Convex Optimization
	Motivation, Scope and Preliminaries
	Related Work
	Types of Adaptive Approximate Projections

	ISA with Predetermined Step Sizes
	ISA with Dynamic Step Sizes
	Convergence Proofs

	Discussion: Extensions of the ISA Framework
	Integration of -Subgradients
	Computable Bounds for the Distance to the Optimal Point Set
	Variable Target Values

	Examples of Adaptive Approximate Projection Operators
	Linear Equality Constraints
	Ellipsoids
	Denoising Constraints
	Convex Expected Value Constraints

	Application in Compressed Sensing: ISAL1
	Implementation Details

	Concluding Remarks
	Intractability of Recovery Conditions: Subtleties and Open Problems
	Test Sets, Solver Comparisons and HOC
	Further Extensions and Applications of ISA
	Sparse Recovery via Branch & Cut
	Other Related Sparsity Problems

	Bibliography
	List of Figures
	List of Tables
	List of Algorithms

